Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:15:57.967Z Has data issue: false hasContentIssue false

The effect of residual carbon on the superconducting properties of YBa2Cu3O7−x powders

Published online by Cambridge University Press:  31 January 2011

Yoshio Masuda
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Rikuro Ogawa
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Yoshio Kawate
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Kazuo Matsubara
Affiliation:
Kobelco Institute Co., Wakinohama Chuo-ku, Kobe 651, Japan
Tsuyoshi Tateishi
Affiliation:
Kobelco Institute Co., Wakinohama Chuo-ku, Kobe 651, Japan
Sumio Sakka
Affiliation:
Institute for Chemical Research, Kyoto University, Gokasho, Uji-shi, Kyoto 611, Japan
Get access

Abstract

Dependence of the contents and the states of residual carbon in YBa2Cu3O7−x powders synthesized by the sol-gel method on heating conditions, and effects of residual carbon on the superconducting properties were investigated. The carbon content of the powder heated at 950 °C for 20 h was reduced to 0.02%. It has been found that a large number of carbonaceous materials in the starting materials that are used in the sol-gel method does not affect the carbon content of synthesized superconducting powders. The volume of diamagnetism was increased and the Tc,onset was raised as the carbon contents were reduced to 0.04%. These properties were further improved by O2–HIP treatment at 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hirabayashi, M., Ihara, H., Terada, N., Senzaki, K., Hayashi, K., Waki, S., Murata, K., Tokumoto, M., and Kimura, Y., Jpn. J. Appl. Phys. 26, L456 (1987).Google Scholar
2Rha, J.J., Yoon, K.J., Kang, S.L., and Yoon, D. N., J. Am. Ceram. Soc. 71, C-328 (1988).Google Scholar
3Tarascon, J. M., Barboux, P. B., Bagley, B. G., Greene, L. H., and Hull, G. W., Mater. Sci. Eng. B1, 29 (1988).Google Scholar
4Parmigiani, F., Chiarello, G., and Ripamonti, N., Phys. Rev. B 36, 7148 (1987).CrossRefGoogle Scholar
5Uno, N., Enomoto, N., Tanaka, Y., and Takami, H., Jpn. J. Appl. Phys. 27, L1003 (1988).Google Scholar
6Masuda, Y. and Tateishi, T., Funtai-oyobi-Funmatsuyakin (Japanese) 35, 865 (1988).Google Scholar
7Kumagai, T., Yokota, H., Kawaguchi, K., Kondo, W., and Mizuta, S., Chem. Lett., 1645 (1987).Google Scholar
8Umeda, T., Kozuka, H., and Sakka, S., Adv. Ceram. Mater. 3, 520 (1988).Google Scholar
9Mclntyre, P., Cima, M.J., and Ng, M.F., J. Appl. Phys. 68, 4183 (1990).Google Scholar
10Umeda, T., Kozuka, H., and Sakka, S., Seramikkusu Ronbunshi (Japanese) 98, 709 (1990).Google Scholar
11Kolar, D., Hrovst, M., and Bernik, S., Br. Ceram. Proc. 40, 77 (1988).Google Scholar
12Takada, J., Kitaguchi, H., Osaka, A., Miura, Y., Takahashi, K., Takano, M., Ikeda, Y., Bando, Y., Yamamoto, N., Oka, Y., and Tomii, Y., Jpn. J. Appl. Phys. 26, L1707 (1987).Google Scholar
13Holland, G.F., Hoskins, R.L., Dixon, M.A., VerNooy, P.D., Loye, H.C. zur, Brimhall, G., Sullivan, D., Cormia, R., Zandbergen, H. W., Gronsky, R., and Stacy, A. M., Am. Chem. Soc. 351, 102 (1987).Google Scholar
14Shigematsu, T., Ishikawa, M., and Nakanishi, N., Funtai-oyobi-Funmatsuyakin (Japanese) 34, 647 (1987).Google Scholar
15Takeda, Y., Kanno, R., Ina, K., Yamamoto, O., Takano, M., Hiroi, Z., and Bando, Y., Funtai-oyobi-Funmatsuyakin (Japanese) 35, 349 (1988).Google Scholar