Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T03:42:55.357Z Has data issue: false hasContentIssue false

Effect of tip radius on nanoindentation

Published online by Cambridge University Press:  31 January 2011

C.W. Shih
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
M. Yang
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
J.C.M. Li
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
Get access

Abstract

The blunt tip geometry of the so-called nanoindenter is modeled by a spherical cap of various radii. The relation between area and penetration depth of the indenter is comparable with experimental results if the radius of the tip is about 1.0 μm. Simulation of indentation tests was carried out using the finite element method by incremental loading and unloading based on a continuum model. Good agreement with the experimental results for nickel is obtained also for a tip radius of 1.0 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
2.Westbrook, J. H., Proc. ASTM 57, 873 (1957).Google Scholar
3.Chu, S. N. G. and Li, J. C. M., J. Mater. Sci. 12, 2200 (1977).CrossRefGoogle Scholar
4.Chu, S. N. G. and Li, J. C. M., Mater. Sci. Eng. 45, 161 (1980).CrossRefGoogle Scholar
5.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
6.Li, J. C. M. and Chu, S. N. G., Scripta Metall. 13, 1021 (1979).CrossRefGoogle Scholar
7.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. 48, 593 (1983).CrossRefGoogle Scholar
8.Oliver, W. C. and McHargue, C. J., Thin Solid Films 161, 117 (1988).CrossRefGoogle Scholar
9.O'Hern, M. E., Parrish, R. H., and Oliver, W. C., Thin Solid Films 181, 357 (1989).CrossRefGoogle Scholar
10.Pharr, G. M. and Oliver, W. C., J. Mater. Res. 4, 94 (1989).CrossRefGoogle Scholar
11.Joslin, D. L. and Oliver, W. C., J. Mater. Res. 5, 123 (1990).CrossRefGoogle Scholar
12.Pethica, J. B. and Oliver, W. C., Physica Scripta T19, 6166 (1987).CrossRefGoogle Scholar
13.Pethica, J. B. and Oliver, W. C., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), pp. 1323.Google Scholar
14.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Structures 24, 881 (1988).CrossRefGoogle Scholar
15.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Structures 27, 1047 (1991).CrossRefGoogle Scholar
16.Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity (McGraw-Hill, New York, 1970).Google Scholar
17.Metals Handbook (American Society for Metals, Metals Park, OH, 1985), Vol. 3.Google Scholar
18. Private communication with Nix, W. D., 1990.Google Scholar