Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T18:05:45.320Z Has data issue: false hasContentIssue false

The effect of Y2Ba1Cu1O5 addition on microstructure and formation of microcracks in the partially melted Y–Ba–Cu–O oxides

Published online by Cambridge University Press:  31 January 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
In-Soon Chang
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Dong-Yeon Won
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Hong-Chul Moon
Affiliation:
Department of Materials Science and Engineering, Choongnam National University, Daeduk Science Town, Daejon, 301-764, Korea
Dong-Soo Suhr
Affiliation:
Department of Materials Science and Engineering, Choongnam National University, Daeduk Science Town, Daejon, 301-764, Korea
Get access

Abstract

In order to investigate microstructural variation by 2-1-1 addition in partially melted Y–Ba–Cu–O, a specimen resulting from 2-1-1 added to 1-2-3 was heat-treated through the peritectic temperature. Microstructure was observed on the directionally solidified region near the interface of the two samples. The 2-1-1 addition results in a homogeneous microstructure where no remnant liquid phase is present. It reduced the 1-2-3 plate thickness, as well as suppressed the formation of microcracks due to the tetragonal-to-orthorhombic phase transition or the thermal contraction during cooling from the peritectic temperature. The formation of microcracks induced by the phase transition seems to be closely related to the process of oxygen diffusion into a sample. We discuss the formation of microcracks in terms of the oxygen diffusion along the plate boundaries and of the thickness of 1-2-3 plates. The decrease in the plate thickness and the fine dispersion of 2-1-1 particles contribute suppression of the formation of microcracks and their propagation.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T., Sherwood, R., Dover, R. van, Davis, M., Kammlott, G., and Fastnacht, R., Phys. Rev. B 37, 7850 (1988).Google Scholar
2Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, L1189 (1989).CrossRefGoogle Scholar
4McGinn, P., Chen, W., Zhu, N., Lanagan, M., and Balachandran, U., Appl. Phys. Lett. 57, 1455 (1990).CrossRefGoogle Scholar
5Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
6Jin, S., Kammlott, G. W., Tiefel, T. H., Kodas, T. T., Ward, T. L., and Kroeger, D. M., Physica C 181, 57 (1991).CrossRefGoogle Scholar
7McGinn, P., Zhu, N., Chen, W., Sengupta, S., and Li, T., Physica C 176, 203 (1991).CrossRefGoogle Scholar
8Murakami, M., Gotoh, S., Fujimoto, H., Yamaguchi, K., Koshizuka, N., and Tanaka, S., Supercon. Sci. Technol. 4, S43 (1991).CrossRefGoogle Scholar
9Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., J. Mater. Res. 6, 1404 (1991).Google Scholar
10Yamaguchi, K., Murakami, M., Fujimoto, H., Koshizuka, N., and Tanaka, S., Physica C 185-189, 2497 (1991).CrossRefGoogle Scholar
11Matsushita, T., Otabe, E.S., Ni, B., Kimura, K., Morita, M., Tanaka, M., Kimura, M., Miyamoto, K., and Sawano, K., Jpn. J. Appl. Phys. 30, L342 (1991).CrossRefGoogle Scholar
12Selvamanickam, V., Forster, K., and Salama, K., Physica C 178, 147 (1991).CrossRefGoogle Scholar
13Chunlin, J., Zhanguo, F., Guofan, Z., Guiyi, Z., Weimin, B., Zhangxian, Z., and Shuquan, G., Supercon. Sci. Technol. 4, 4954 (1991).CrossRefGoogle Scholar
14Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar
15Kim, C. J., Kim, K. B., and Won, D. Y., Mater. Lett. 14, 268 (1992).Google Scholar