Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:33:05.020Z Has data issue: false hasContentIssue false

Effects of substrate bias on nanocrystal-(Ti, Al)Nx/amorphous-SiNy composite films

Published online by Cambridge University Press:  31 January 2011

Bao-Shun Yau
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Jow-Lay Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Ming-Chi Kan
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Get access

Abstract

Nanocrystal-(Ti, Al)Nx/amorphous-SiNy composite films were prepared in a codeposition process under different substrate bias voltages. The effects of substrate bias voltage on the deposition rate, composition, microstructure, and mechanical properties of nanocomposite films were investigated. Results indicated that the films with bias voltages caused resputtering due to the bombardment of high-energy ions on film surface. The resputtering effect had substantial influence on deposition rate, surface morphology, and composition of films. The films with (220) preferred orientation were also observed as the applied substrate bias voltages exceeded 50 V. As the substrate bias voltage increased, the nanocrystallite size increased, lattice strain raised, and the hardness decreased.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Veprek, S., Reiprich, S., and Li, S., Appl. Phys. Lett. 66, 2640 (1995).CrossRefGoogle Scholar
Veprek, S. and Reiprich, S., Thin Solid Films 268, 64 (1995).CrossRefGoogle Scholar
Veprek, S., Thin Solid Films 297, 145 (1997).CrossRefGoogle Scholar
Veprek, S., Thin Solid Films 317, 449 (1998).CrossRefGoogle Scholar
Callister, W.D., Jr., Materials Science and Engineering: An Introduction, 5th ed. (John Wiley & Sons, Inc., New York, 1999).Google Scholar
Yau, B.S., Huang, J.L., and Lii, D.F. (submitted).Google Scholar
Lee, M.K. and Kang, H.S., J. Mater. Res. 12, 2393 (1997).CrossRefGoogle Scholar
Bland, R.D., Kominiak, G.J., and Mattox, D.M., J. Vac. Sci. Technol. 11, 671 (1974).CrossRefGoogle Scholar
Berg, S. and Katardjiev, I. V., Surf. Coating Technol. 68–69, 325 (1994).CrossRefGoogle Scholar
Coll, B.F., Fontana, R., Gates, A., and Sathrum, P., Mater. Sci. Eng. A 140, 816 (1991)CrossRefGoogle Scholar
Shew, B.Y. and Huang, J.L., Surf. Coat. Technol. 71, 30 (1995).CrossRefGoogle Scholar
Hakasson, G. and Sundgren, J. E., Thin Solid Films 153, 55 (1987).CrossRefGoogle Scholar
Lee, D.M., J. Mater. Sci. 24, 4375 (1989).CrossRefGoogle Scholar
Ensinger, W., Surf. Coat. Technol. 65, 90 (1994).CrossRefGoogle Scholar
Shew, B.Y., Huang, J.L., and Lii, D.F., Thin Solid Films 293, 212 (1997).CrossRefGoogle Scholar
Dong, L. and Srolovitz, D.J., J. Appl. Phys. 84, 5261 (1998).CrossRefGoogle Scholar
Chou, W.J., Yu, G.P., and Huang, J.H., Thin Solid Films 405, 162 (2002).CrossRefGoogle Scholar
Sano, M., Yukimura, K., Maruyama, T., Kurooka, S., Suzuki, Y., Chayahara, A., Kinomura, A., and Horino, Y., Nucl. Instrum. Meth. Phys. Res. B 148, 37 (1999).CrossRefGoogle Scholar
Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
Valvoda, V., Kuzel, R., Jr., and Cerny, R., Thin Solid Films 156, 53 (1988).CrossRefGoogle Scholar
Marinov, M., Thin Solid Films 46, 5267 (1977).CrossRefGoogle Scholar
Ma, H.L., Hao, X.T., Ma, J., Yang, Y.G., Huang, S.L., Chen, F., Wang, Q.P., and Zhang, D.H., Surf. Coat. Technol. 161, 58 (2002).CrossRefGoogle Scholar
Andersen, P., Moske, M., Dyrbye, K., and Bottiger, J., Thin Solid Films 340, 205 (1999).CrossRefGoogle Scholar
Rickerby, D.S., J. Vac. Sci. Technol. A 4, 2809 (1986).CrossRefGoogle Scholar
Mirkarimi, P.B., Medlin, D.L., McCarty, K.F., Dibble, D.C., Clift, W.M., J. Appl. Phys. 82, 1617 (1997).CrossRefGoogle Scholar
Bull, S.J., Page, T.F., and Yoffe, E.H., Philos. Mag. Lett. 59, 281 (1989).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M., J. Mater. Res. 47, 1564 (1992).CrossRefGoogle Scholar
Vaz, F., Rebouta, L., Ramos, S., Silva, M.F. da, and Soares, J.C., Surf. Coat. Technol. 108–109, 236 (1998).CrossRefGoogle Scholar