Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T14:56:22.518Z Has data issue: false hasContentIssue false

Effects of the alloying element on the stacking fault energies of dilute Ir-based superalloys: A comprehensive first-principles study

Published online by Cambridge University Press:  09 October 2020

Gengsen Xu
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming650093, China
Xiaoyu Chong*
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming650093, China Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
Yunxuan Zhou
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming650093, China
Yan Wei*
Affiliation:
Sino-Precious Metals Holding Co., Ltd., Kunming650093, China
Changyi Hu
Affiliation:
Sino-Precious Metals Holding Co., Ltd., Kunming650093, China
Aimin Zhang
Affiliation:
Sino-Precious Metals Holding Co., Ltd., Kunming650093, China
Rong Zhou
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming650093, China
Jing Feng
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming650093, China
*
a)Address all correspondence to these authors. e-mail: xuc83@psu.edu
Get access

Abstract

Iridium (Ir) has an extremely high melting point (2443 °C), high chemical stability and is one of the most promising high-temperature materials. However, Ir is more difficult to process compared with other face-centered cubic metals, such as Ni and Al, which limits its applications. To solve this problem, we study the effect of 32 alloying elements (X) on stacking fault energy of dilute Ir-based alloys generated by shear deformation using the first-principles calculations. The investigation reveals that there are many alloying elements studied herein decrease the stacking fault energy of face-centered cubic (fcc) Ir, and the most effective element in reducing stacking fault energy of fcc Ir is Zn. The microscopic mechanism is caused by electron redistribution in the local stacking fault area. These results are expected to provide valuable guidance for the further design and application of Ir-based alloys.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hunt, L.B.: History of iridium. Platinum Met. Rev. 31, 32 (1987).Google Scholar
2.Tuffias, R., Brockmeyer, J., Fortini, A., Williams, B., and Kaplan, R.: Engineering issues of iridium/rhenium rocket engines revisited. In 35th Joint Propulsion Conference and Exhibit (20–24 June 1999, Los Angeles, California).CrossRefGoogle Scholar
3.Merker, J., Fischer, B., Lupton, D.F., and Witte, J.: Investigations on structure and high temperature properties of iridium. Mater. Sci. Forum 539–543, 2216 (2007).CrossRefGoogle Scholar
4.Cottrell, A.H.: The mechanical properties of matter. Am. J. Phys. 36, 68 (1964).CrossRefGoogle Scholar
5.Hecker, S.S., Rohr, D.L., and Stein, D.F.: Brittle fracture in iridium. Metall. Trans. A 9, 481 (1978).CrossRefGoogle Scholar
6.Gandhi, C. and Ashby, M.F.: On fracture mechanisms of iridium and criteria for cleavage. Scr. Metall. 13, 371 (1979).CrossRefGoogle Scholar
7.Gubbi, A.N., George, E.P., Ohriner, E.K., and Zee, R.H.: Segregation of lutetium and yttrium to grain boundaries in iridium alloys. Acta Mater. 46, 893 (1998).CrossRefGoogle Scholar
8.Liu, C.T. and Inouye, H.: Development and Characterization of an Improved Ir–0. 3% W Alloy for Space Radioisotopic Heat Sources (Oak Ridge National Lab., TN, USA, 1977).CrossRefGoogle Scholar
9.Yamabe, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H.: Development of Ir-base refractory superalloys. Scr. Mater. 35, 579 (1996).CrossRefGoogle Scholar
10.Hirth, J.P., Lothe, J.: Theory of Dislocations (McGraw-Hill Book Company, 1968, p. 637).Google Scholar
11.Ogata, S., Umeno, Y., and Kohyama, M.: First-principles approaches to intrinsic strength and deformation of materials: Perfect crystals, nano-structures, surfaces and interfaces. Modell. Simul. Mater. Sci. Eng. 17, 013001 (2009).CrossRefGoogle Scholar
12.Shang, S.L., Wang, W.Y., Wang, Y., Du, Y., Zhang, J.X., Patel, A.D., and Liu, Z.K.: Temperature-dependent ideal strength and stacking fault energy of fcc Ni: A first-principles study of shear deformation. J. Phys.: Condens. Matter 24, 155402 (2012).Google ScholarPubMed
13.Wang, W.Y., Zhang, Y., Li, J., Zou, C., Tang, B., Wang, H., Lin, D., Wang, J., Kou, H., and Xu, D.: Insight into solid-solution strengthened bulk and stacking faults properties in Ti alloys: A comprehensive first-principles study. J. Mater. Sci. 53, 7493 (2018).CrossRefGoogle Scholar
14.Andric, P., Yin, B., and Curtin, W.A.: Stress-dependence of generalized stacking fault energies. J. Mech. Phys. Solids 122, 262 (2019).CrossRefGoogle Scholar
15.Cai, T., Li, K.Q., Zhang, Z.J., Zhang, P., Liu, R., Yang, J.B., and Zhang, Z.F.: Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations. J. Mater. Sci. Technol. 53, 61 (2020).CrossRefGoogle Scholar
16.Cai, B., Long, Y., Wen, C., Gong, Y., Li, C., Tao, J., and Zhu, X.: Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys. J. Mater. Res. 29, 1747 (2014).CrossRefGoogle Scholar
17.Yuasa, M., Chino, Y., and Mabuchi, M.: Mechanical and chemical effects of solute elements on generalized stacking fault energy of Mg. J. Mater. Res. 29, 2576 (2014).CrossRefGoogle Scholar
18.Magalhães, D.C.C., Kliauga, A.M., Ferrante, M., and Sordi, V.L.: Plastic deformation of FCC alloys at cryogenic temperature: The effect of stacking-fault energy on microstructure and tensile behaviour. J. Mater. Sci. 52, 7466 (2017).CrossRefGoogle Scholar
19.Shang, S.L., Zacherl, C.L., Fang, H.Z., Wang, Y., Du, Y., and Liu, Z.K.: Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys.: Condens. Matter 24, 505403 (2012).Google ScholarPubMed
20.Tian, L-Y., Lizárraga, R., Larsson, H., Holmström, E., and Vitos, L.: A first principles study of the stacking fault energies for fcc Co-based binary alloys. Acta Mater. 136, 215 (2017).CrossRefGoogle Scholar
21.Wang, W.Y., Shang, S.L., Wang, Y., Mei, Z.G., Darling, K.A., Kecskes, L.J., Mathaudhu, S.N., Hui, X.D., and Liu, Z.K.: Effects of alloying elements on stacking fault energies and electronic structures of binary Mg alloys: A first-principles study. Mater. Res. Lett. 2, 29 (2014).CrossRefGoogle Scholar
22.Wang, C., Zhang, H.Y., Wang, H.Y., Liu, G.J., and Jiang, Q.C.: Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations. Scr. Mater. 69, 445 (2013).CrossRefGoogle Scholar
23.Zhang, S.H., Beyerlein, I.J., Legut, D., Fu, Z.H., Zhang, Z., Shang, S.L., Liu, Z.K., Germann, T.C., and Zhang, R.F.: First-principles investigation of strain effects on the stacking fault energies, dislocation core structure, and Peierls stress of magnesium and its alloys. Phys. Rev. B 95 (2017).CrossRefGoogle Scholar
24.Chen, S., Wang, Q., Liu, X., Tao, J., Wang, J., Wang, M., and Wang, H.: First-principles studies of intrinsic stacking fault energies and elastic properties of Al-based alloys. Mater. Today Commun. 24, 1 (2020).Google Scholar
25.Zhang, Y., Li, J., Wang, W.Y., Li, P., Tang, B., Wang, J., Kou, H., Shang, S., Wang, Y., Kecskes, L.J., Hui, X., Feng, Q., and Liu, Z-K.: When a defect is a pathway to improve stability: A case study of the L12 Co3TM superlattice intrinsic stacking fault. J. Mater. Sci. 54, 13609 (2019).CrossRefGoogle Scholar
26.Bao, H-S., Gong, Z-H., Chen, Z-Z., and Yang, G.: Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 39, 716 (2020).CrossRefGoogle Scholar
27.Wu, X-Z., Wang, R., Wang, S-F., and Wei, Q-Y.: Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals. Appl. Surf. Sci. 256, 6345 (2010).CrossRefGoogle Scholar
28.Jin, Z.H., Dunham, S.T., Gleiter, H., Hahn, H., and Gumbsch, P.: A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605 (2011).CrossRefGoogle Scholar
29.Gornostyrev, Y.N., Katsnelson, M.I., Medvedeva, N.I., Mryasov, O.N., Freeman, A.J., and Trefilov, A.V.: Peculiarities of defect structure and mechanical properties of iridium results of ab initio electronic structure calculations. Phys. Rev. B 62, 7802 (2000).CrossRefGoogle Scholar
30.Adamesku, R., Barkhatov, V., and Yermakov, A.: Elastic Properties of Iridium Single Crystals. Vysokochistye Veschestva, 3, 129 (1990).Google Scholar
31.Balk, T.J. and Hemker, K.J.: High resolution transmission electron microscopy of dislocation core dissociations in gold and iridium. Philos. Mag. A 81, 1507 (2001).CrossRefGoogle Scholar
32.Vitos, L., Nilsson, J.O., and Johansson, B.: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Mater. 54, 3821 (2006).CrossRefGoogle Scholar
33.Qi, Y. and Mishra, R.K.: Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum. Phy. Rev. B 75, 224105 (2007).CrossRefGoogle Scholar
34.Nakashima, P.N.H., Smith, A.E., Etheridge, J., and Muddle, B.C.: The bonding electron density in aluminum. Science 331, 1583 (2011).CrossRefGoogle ScholarPubMed
35.Shang, S.L., Wang, W.Y., Zhou, B.C., Wang, Y., Darling, K.A., Kecskes, L.J., Mathaudhu, S.N., and Liu, Z.K.: Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Mater. 67, 168 (2014).CrossRefGoogle Scholar
36.Shang, S.L., Kim, D.E., Zacherl, C.L., Wang, Y., Du, Y., and Liu, Z.K.: Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations. J. Appl. Phys. 112, 053515 (2012).CrossRefGoogle Scholar
37.Xu, W.W., Shang, S.L., Wang, C.P., Gang, T.Q., Huang, Y.F., Chen, L.J., Liu, X.J., and Liu, Z.K.: Accelerating exploitation of Co-Al-based superalloys from theoretical study. Mater. Des. 142, 139 (2018).CrossRefGoogle Scholar
38.Segall, M.D., Shah, R., and Pickard, C.J.: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).CrossRefGoogle ScholarPubMed
39.Chong, X., Jiang, Y., Zhou, R., and Feng, J.: First principles study the stability, mechanical and electronic properties of manganese carbides. Comput. Mater. Sci. 87, 19 (2014).CrossRefGoogle Scholar
40.Emmanuel, C.: Screw dislocation in zirconium: An ab initio study. Phys. Rev. B 86, 144104 (2012).Google Scholar
41.Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., and Clark, S.J.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
42.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed