Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T23:26:34.209Z Has data issue: false hasContentIssue false

Elaboration and characterization of novel polyamide-12-layered titanoniobates nanocomposites

Published online by Cambridge University Press:  31 January 2011

Sophie Chausson
Affiliation:
Laboratoire de Cristallographie et Sciences des Materiaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique, 6508 ENSICAEN, Université de Caen Basse-Normandie, 14050 Caen, France
Richard Retoux
Affiliation:
Laboratoire de Cristallographie et Sciences des Materiaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique, 6508 ENSICAEN, Université de Caen Basse-Normandie, 14050 Caen, France
Jean-Michel Rueff
Affiliation:
Laboratoire de Cristallographie et Sciences des Materiaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique, 6508 ENSICAEN, Université de Caen Basse-Normandie, 14050 Caen, France
Loïc LE Pluart*
Affiliation:
Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, Centre National de la Recherche Scientifique, 14050 Caen, France
Pierre-Jean Madec
Affiliation:
Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, Centre National de la Recherche Scientifique, 14050 Caen, France
Paul-Alain Jaffres
Affiliation:
Université Européenne de Bretagne, France; and Université de Brest, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6521, CEMCA, Institut Fédératif de Recherche 148 ScInBios, 29238 Brest, France
*
a) Address all correspondence to this author. e-mail: loic.le_pluart@ensicaen.fr
Get access

Abstract

This article describes the synthesis and the characterization of a polyamide-12 filled with a nanostructured organic/inorganic titanoniobate hybrid material. The pristine oxide KTiNbO5 has been successfully organomodified by N-alkyl amines via an acido-basic reaction after a cationic exchange step as shown by x-ray diffraction. Transmission electron microscope study and scanning transmission electron microscope observations have been used to describe the change of morphology of the nanofillers before and after processing; the micronic aggregates were changed into single sheets and dispersed in the polymer. Thermomechanical properties of the composites have been determined, and their analyses with structure-properties models are consistent with the exfoliation of the organomodified titanoniobates.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Okada, A., Kawasumi, O., Usuki, A., Kojima, Y., Kurauchi, T., and Kamigaito, O.: Nylon 6-clay hybrid, in Polymer Based Molecular Composites, edited by D.W., Schaefer and J.E., Mark (Mater. Res. Soc. Symp. Proc. 171, Pittsburgh, PA, 1990), pp. 4550.Google Scholar
2.Usuki, A., Kojima, Y., Kawasumi, O., Okada, A., Fukushima, T., Kurauchi, T., and Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179 (1993).CrossRefGoogle Scholar
3.Kojima, Y., Usuki, A., Kawasumi, O., Okada, A., Kurauchi, T., and Kamigaito, O.: Synthesis of Nylon 6-clay hybrid by montmorillonite intercalated with e-caprolactam. J. Polym. Sci., Part A: Polym. Chem. 31, 983 (1993).CrossRefGoogle Scholar
4.Okada, A. and Usuki, A.: The chemistry of polymer-clay hybrids. Mater. Sci. Eng., C 3(2), 109 (1995).Google Scholar
5.LeBaron, P.C., Wang, Z., and Pinnavaia, T.J.: Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 15, 11 (1999).CrossRefGoogle Scholar
6.Alexandre, M. and Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1 (2000).Google Scholar
7.Ray, S. and Okamoto, M. Sinha: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28(11), 1539 (2003).Google Scholar
8.Pavlidou, S. and Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119 (2008).CrossRefGoogle Scholar
9.Vaia, R.A. and Giannelis, E.P.: Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 8000 (1997).Google Scholar
10.Lagaly, G.: Intercalation of alkylamines with different types of layered compounds. Solid State Ionics 22, 43 (1986).CrossRefGoogle Scholar
11.Theng, B.K.G.: The Chemistry of Clay-Organic Reactions (Halsted, New York, 1974), p. 343.Google Scholar
12.Lagaly, G. and Beneke, K.: Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Colloid Polym. Sci. 269, 1198 (1991).CrossRefGoogle Scholar
13.Sposito, G. and Fletcher, P.: Sodium-calcium-magnesium exchange reactions on a montmorillonitic soil: III. Calcium-magnesium exchange selectivity. Soil Sci. Soc. Am. J. 49, 1160 (1985).Google Scholar
14.Heinz, H., Castelijns, H.J., and Suter, U.W.: Structure and phase transitions of alkyl chains on mica. J. Am. Chem. Soc. 125(31), 9500 (2003).Google Scholar
15.Vaia, R.A. and Giannelis, E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 7990 (1997).Google Scholar
16.Fornes, T.D., Yoon, P.J., Hunter, D.L., Keskkula, H., and Paul, D.R.: Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer (Guildf.) 43, 5915 (2002).Google Scholar
17.Osman, M.A., Seyfang, G., and Suter, U.W.: Two-dimensional melting of alkanes monolayers ionically bonded to mica. J. Phys. Chem. B 104(18), 4433 (2000).Google Scholar
18.Kuelpmann, A., Osman, M.A., Kocher, L., and Suter, U.W.: Influence of platelet aspect ratio and orientation on the storage and loss moduli of HDPE-mica composites. Polymer (Guildf.) 46(2), 523 (2005).Google Scholar
19.Hibino, T. and Jones, W.: New approach to the delamination of layered double hydroxides. J. Mater. Chem. 11, 1321 (2001).CrossRefGoogle Scholar
20.Prévot, V., Forano, C., and Besse, J-P.: Hybrid derivatives of layered double hydroxides. Appl. Clay Sci. 18, 3 (2001).CrossRefGoogle Scholar
21.Cao, G., Hong, H., and Mallouk, T.E.: Layered metal phosphates and phosphonates: From crystals to monolayers. Acc. Chem. Res. 25, 420 (1992).Google Scholar
22.Sun, L.Y., Boo, W.J., Sue, H.J., and Clearfield, A.: Preparation of alpha-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J. Chem. 31(1), 39 (2007).Google Scholar
23.Boo, W.J., Sun, L.Y., Liu, J., Clearfield, A., Sue, H-J., Mullins, M.J., and Pham, H.: Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos. Sci. Technol. 67(2), 262 (2007).Google Scholar
24.Boo, W.J., Sun, L., Warren, G.L., Moghbelli, E., Pham, H., Clearfield, A., and Sue, H.J.: Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer (Guildf.) 48(4), 1075 (2007).Google Scholar
25.Hsueh, H-B. and Chen, C-Y.: Preparation and properties of LDHs/ epoxy nanocomposites. Polymer (Guildf.) 44, 5275 (2003).CrossRefGoogle Scholar
26.Wadsley, A.D.: Alkali titanoniobates. The crystal structures of KTiNbO5 and KTi3NbO9. Acta Crystallogr. 17, 623 (1964).CrossRefGoogle Scholar
27.Beigbeider, A., Bruzaud, S., Médéric, P., Aubry, T., and Grohens, Y.: Rheological characterization of polydimethylsiloxane/HTiNbO5 nanocomposites prepared by different routes. Polymer (Guildf.) 46, 12279 (2005).CrossRefGoogle Scholar
28.Bruzaud, S. and Levesque, G.: Polysiloxane-g-TiNbO5 nanocomposites: Synthesis via in situ intercalative polymerization and preliminary characterization. Chem. Mater. 14, 2421 (2002).CrossRefGoogle Scholar
29.Sukpirom, N. and Lerner, M.M.: Preparation of organic-inorganic nanocomposites with a layered titanate. Chem. Mater. 13, 2179 (2001).Google Scholar
30.Lambert, J.F., Deng, Z., D'Espinose, J.B., and Fripat, J.J.: The intercalation process of N-alkyl amines or ammoniums within the structure of KTiNbO5. J. Colloid Interface Sci. 132, 337 (1989).Google Scholar
31.Kikkawa, S. and Koizumi, M.: Organic intercalation on layered compound KTiNbO5. Mater. Res. Bull. 15, 533 (1980).Google Scholar
32.Tagaya, H., Saito, K., Kuwahara, T., Kadokawa, J., and Chiba, K.: Intercalation of organic compounds into layered titanoniobate KTiNbO5. Catal. Today 16, 463 (1993).CrossRefGoogle Scholar
33.Rebbah, H., Borel, M.M., and Raveau, B.: Intercalation of alkylammonium ions and oxide layers (TiNbO5). Mater. Res. Bull. 15, 317 (1980).Google Scholar
34.Rebbah, H., Borel, M.M., Bernard, M., and Raveau, B.: Intercalation of nitrogen derivatives into the structure of HTiNbO5layers. Rev. Chim. Miner. 18, 109 (1981).Google Scholar
35.Chausson, S., Caignaert, V., Retoux, R., Rueff, J.M., Pluart, L. Le, Madec, P.J., and Jaffre`s, P.A.: Polyethylene nanocomposites based on intercalation of N-alkyl amines within KTiNbO5 structure. Polymer (Guildf.) 49(2), 488 (2008).CrossRefGoogle Scholar
36.Heinz, H., Vaia, R.A., and Farmer, B.L.: Interaction energy and surface reconstruction between sheets of layered silicates. J. Chem. Phys. 124(22), 224713 (2006).CrossRefGoogle ScholarPubMed
37.Osman, M.A. and Suter, U.W.: Determination of the cation-exchange capacity of muscovite mica. J. Colloid Interface Sci. 224, 112 (2000).Google Scholar
38.Inoue, K. and Hoshino, S.: Crystal structure of nylon 12. J. Polym. Sci., Polym. Phys. Ed. 11, 1077 (1973).CrossRefGoogle Scholar
39.Dencheva, N., Nunes, T.G., Oliveira, M.J., and Denchev, Z.: Crystalline structure of polyamide 12 as revealed by solid-state 13 CNMR and synchrotron WAXS and SAXS. J. Polym. Sci., Part B: Polym. Phys. 43, 3720 (2005).Google Scholar
40.Giannelis, E.P., Krishnamoorti, R., and Manias, E.: Polymersilicate nanocomposites: Model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107 (1999).CrossRefGoogle Scholar
41.Morgan, A.B. and Gilman, J.W.: Characterization of polymerlayered silicate (clay) nanocomposites by transmission electron microscopy and x-ray diffraction: A comparative study. J. Appl. Polym. Sci. 87, 1329 (2003).Google Scholar
42.Garboczi, E.J., Snyder, K.A., Douglas, J.F., and Thorpe, M.F.: Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 52, 819 (1995).Google Scholar
43.Phang, I.Y., Liu, T., Mohamed, A., Pramoda, K.P., Chen, L., Shen, L., Chow, S.Y., He, C., Lu, X., and Hu, X.: Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polym. Int. 54, 456 (2005).Google Scholar
44.Wang, Z., Du, X., Song, R., Meng, X., Jiang, Z., and Tang, T.: Chemical effects of cationic surfactant and anionic surfactant used in organically modified montmorillonites on degradation and fire retardancy of polyamide 12 nanocomposites. Polymer (Guildf.) 48(25), 7301 (2007).CrossRefGoogle Scholar
45.Zhao, Z., Tang, T., Qin, Y., and Huang, B.: Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants. Langmuir 19, 9260 (2003).CrossRefGoogle Scholar
46.Gogolewski, S., Czerniawska, K., and Gasiorek, M.: Effect of annealing on thermal-properties and crystalline-structure of polyamides—Nylon 12- (polylaurolactam). Colloid Polym. Sci. 258, 1130 (1980).Google Scholar
47.Halpin, J.C. and Kardos, J.L.: The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16(5), 344 (1976).Google Scholar
48.Fornes, T.D. and Paul, D.R.: Structure and properties of nanocomposites based on nylon-11 and -12 compared with those based on nylon-6. Macromolecules 37, 7698 (2004).CrossRefGoogle Scholar
49.Zhuang, G.S., Suia, G.X., Menga, H., Suna, Z.S., and Yanga, R.: Mechanical properties of potassium titanate whiskers reinforced poly(ether ether ketone) composites using different compounding processes. Compos. Sci. Technol. 67, 1172 (2007).Google Scholar
50.Pruzan, P., Gourdain, D., Chervin, J.C., Canny, B., Couzinet, B., and Hanfland, M.: Equation of state of BaTiO3 and KNbO3 at room temperature up to 30 GPa. Solid State Commun. 123, 21 (2002).Google Scholar
51.Schaefer, D.W. and Justice, R.S.: How nano are nanocomposites? Macromolecules 40, 8501 (2007).CrossRefGoogle Scholar