Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T04:27:40.040Z Has data issue: false hasContentIssue false

Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds

Published online by Cambridge University Press:  31 January 2011

M. Krzesińska
Affiliation:
Institute of Coal Chemistry, Polish Academy of Sciences, Sowinskiego 5, 44-121 Gliwice, Poland
A. Celzard*
Affiliation:
Laboratoire de Chimie du Solide Minéral, UMR-CNRS 7555, BP 239, 54506 Vandoeuvre-lés-Nancy, France
J.F. Marêché
Affiliation:
Laboratoire de Chimie du Solide Minéral, UMR-CNRS 7555, BP 239, 54506 Vandoeuvre-lés-Nancy, France
S. Puricelli
Affiliation:
Laboratoire de Chimie du Solide Minéral, UMR-CNRS 7555, BP 239, 54506 Vandoeuvre-lés-Nancy, France
*
a)Address all correspondence to this author. e-mail: Alain.Celzard@lcsm.uhp-nancy.fr
Get access

Abstract

The elastic properties of cubic samples of compressed expanded graphite determined by means of ultrasonic velocity measurements are presented. These materials are highly porous and exhibit porosity-dependent anisotropic moduli. The results are analyzed according to two approaches. The first involves semi-empirical equations fitted to the experimental data, resulting in information about the shape and the connectivity of pores. It is found that pores are oblate ellipsoids, connected parallel to their direction of flatness. The second approach is based on application of the percolation theory near the rigidity threshold. The value of the critical exponent indicates that compressed expanded graphites behave like elastic networks in which central forces are predominant. Results of this study give evidence that ultrasound is a convenient and accurate method for investigation of the critical behavior of the elastic properties in highly tenuous structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Furdin, G., Fuel 77, 479 (1998); D.D.L. Chung, J. Mater. Sci. 22, 4190 (1987); F. Kang, Y. Leng, and T.Y. Zhang, J. Phys. Chem. Solids 57, 889 (1996); CECA S.A. and Le Carbone Lorraine S.A., Brit. Pat. 1 (588) (1981) 876.Google Scholar
2.Thomy, A., Duval, X., and Régnier, J., Surf. Sci. Rep. 1, 1 (1981).CrossRefGoogle Scholar
3.Puricelli, S., Marêché, J.F., Furdin, G., Bégin, D., and Pajak, J., Enveloppe Soleau No. INPI 52 648.Google Scholar
4.Nozdriev, V.F., in Molekularnaya Akustika (Vysshaya Shkola Press, Moscow, 1974; in Russian), p. 10 and Chap. IV; see also V.F. Nozdriev in The Use of Ultrasonics in Molecular Physics (MacMillan, New York, 1965).Google Scholar
5.Krzesińska, M., Fuel 77, 649 (1998).Google Scholar
6.Byrne, J.F. and Marsh, H., in Porosity in Carbons: Characterization and Applications, edited by Patrick, J.W. (Edward Arnold, London, United Kingdom, 1995), Chap. 1; B. McEnaney and T.J. Mays, in Introduction to Carbon Science, edited by H. Marsh (Butterworths, London, United Kingdom, 1989), Chap. 5.Google Scholar
7.Sliwinski, A., in Ultrasounds and their Applications (WNT, Warsaw, Poland, 1993; in Polish), p. 32.Google Scholar
8.Stein, R.S. and Wilkes, G.L., in Structure and Properties of Oriented Polymers, edited by Ward, I.M. (Appl. Sci. Publishers, London, United Kingdom, 1975), p. 136; I. Perepetchko, in Acoustic Methods of Investigating Polymers (Mir Publishers, Moscow, 1975; translated from the Russian), pp. 14–15.Google Scholar
9.Truell, R., Elbaum, C., and Chick, B.B., in Ultrasonic Methods in Solid State Physics (Academic Press, London, United Kingdom, 1969), Chap. 2.Google Scholar
10.Klatt, M., Ph.D. Thesis, University of Nancy I, France (1985); R.E. Stevens, S. Ross, and S.P. Wesson, Carbon 11, 525 (1973); A. Yoshida, Y. Hishiyama, and M. Inagaki, Carbon 29, 1227 (1991).Google Scholar
11.Patrick, J.W. and Walker, A., in Porosity in Carbons: Characterization and Applications, edited by Patrick, J.W. (Edward Arnold, London, United Kingdom, 1995), Chap. 7.Google Scholar
12.Zhao, Y.X. and Spain, I.L., Phys. Rev. B 40, 993 (1989).CrossRefGoogle Scholar
13.Rice, R.W., J. Mater. Sci. 31, 1509 (1996).Google Scholar
14.Rice, R.W., Key Eng. Mater. 115, 1 (1996).CrossRefGoogle Scholar
15.Spriggs, R.M., J. Am. Ceram. Soc. 44, 628 (1961); J.C. Wang, J. Mater. Sci. 19, 801 (1984).Google Scholar
16.Phani, K.K. and Niyogi, S.K., J. Mater. Sci. 22, 257 (1987).Google Scholar
17.Czeremskoy, P.G., Slezow, W.W., and Betechtin, W.I., in Pores in Solids (Energoatomizdat, Moscow, 1990; in Russian), pp. 306313; J. Berdowski and M. Krzesińska, in Proc. French-Polish Conf. of GDRE on Carbon Chemistry: Functionalized Carbon Materials, Zakopane, September 1997, edited by CNRS-PAS (University H. Poincaré–ICC PAS, Nancy–Gliwice, 1997), p. 100.Google Scholar
18.Krzesińska, M., Pajak, J., Oger, N., Celzard, A., Marêché, J.F., and Puricelli, S., in Proc. International Conf. of GDRE on Function-alized Carbon Materials with Controlled Porosity, Zakopane, September 1999, edited by CNRS-PAS (ICC PAS, Gliwice), p. 60.Google Scholar
19.Rice, R.W., J. Mater. Sci. 31, 102 (1996).Google Scholar
20.Celzard, A. and Marêché, J.F. (unpublished).Google Scholar
21.Dowell, M.B. and Howard, R.A., Carbon 24, 311 (1986).CrossRefGoogle Scholar
22.Sahimi, M., Phys. Rep. 306, 213 (1998).CrossRefGoogle Scholar
23.Gennes, P.G. De, J. Phys. Lett. 37, L1 (1976).Google Scholar
24.Guyon, E. and Roux, S., La Recherche (Paris) 18, 1050 (1987).Google Scholar
25.Gennes, P.G. De, J. Phys. Colloq. 41, C317 (1980); S. Alexander, J. Phys. (Paris) 45, 1939 (1984); A.R. Day, R.R. Tremblay, and A.M.S. Tremblay, Phys. Rev. Lett. 56, 2501 (1986).Google Scholar
26.Sahimi, M. and Arbabi, S., Phys. Rev. B 47, 703 (1993).Google Scholar
27.Roux, S., Acad, C.R.. Sci., Sér 2 301, 367 (1985); Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891 (1984); S. Roux, J. Phys. A: Math. Gen. 19, L351 (1986); E. Del Gado, L. De Arcangelis, and A. Coniglio, Europhys. Lett. 46, 288 (1999).Google Scholar
28.Sahimi, M., in Applications of Percolation Theory (Taylor and Francis, Bristol, PA, 1994), p. 16.Google Scholar
29.Sahimi, M., J. Phys. C: Solid State Phys. 19, L79 (1986); S. Feng, P.N. Sen, B.I. Halperin, and C.J. Lobb, Phys. Rev. B 30, 5386 (1984).Google Scholar
30.Obukhov, S.P., Phys. Rev. Lett. 74, 4472 (1995).Google Scholar
31.Smith, L.N. and Lobb, C.J., Phys. Rev. B 20, 3653 (1979).Google Scholar
32.Balberg, I. and Binenbaum, N., Phys. Rev. B 28, 3799 (1983); C.J. Lobb, D.J. Franck, and M. Tinkham, Phys. Rev. B 23, 2262 (1981).CrossRefGoogle Scholar
33.Blanc, R., Mitescu, C.D., and Thévenot, G., J. Phys. (Paris) 41, 387 (1980); I. Balberg and N. Binenbaum, Phys. Rev. A 31, 1222 (1985); S. Yoon and S.I. Lee, Physica B 167, 133 (1990); K.S. Mendelson and F.G. Karioris, J. Phys. C: Solid State Phys. 13, 6197 (1980); A.K. Sarychev and A.P. Vinogradoff, J. Phys. C: Solid State Phys. 12, L681 (1979).Google Scholar
34.Kantor, Y. and Webman, I., Phys. Rev. Lett. 52, 1891 (1984); S. Feng and P.N. Sen, Phys. Rev. Let. 52, 216 (1984); C. Moukarzel and P.M. Duxbury, Phys. Rev. E 59, 2614 (1999); A. Gilabert, M. Ben-Ayad, S. Roux, and E. Guyon, J. Phys. (Paris) 49, 1629 (1988); S. Feng, M.F. Thorpe, and E. Garboczi, Phys. Rev. B 31, 276 (1985); D.J. Jacobs and M.F. Thorpe, Phys. Rev. E 53, 3682 (1996).Google Scholar
35.Phillips, J.C. and Thorpe, M.F., Solid State Commun. 53, 699 (1985).Google Scholar