Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T18:14:06.913Z Has data issue: false hasContentIssue false

Elasticity and fracture in particulate composites with strong and degraded interfaces

Published online by Cambridge University Press:  31 January 2011

A. Lekatou
Affiliation:
Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester, M60 1QD, United Kingdom
S. E. Faidi
Affiliation:
Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester, M60 1QD, United Kingdom
S. B. Lyon
Affiliation:
Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester, M60 1QD, United Kingdom
R. C. Newman
Affiliation:
Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester, M60 1QD, United Kingdom
Get access

Abstract

Silane-coated glass microspheres randomly embedded in an epoxy polymer matrix have been employed as a model system to investigate the degradation of disordered composite materials by water, and to test various models of deformation and fracture. Numerous composites containing sodalime (A) glass in the range 0 to 25% by volume were tested dry and immersed in saturated NaCl at 40 °C for periods up to 70 days before testing. Enhanced osmotic water uptake due to percolating interface damage was observed for composites containing more than 15% glass. The electrical resistance of similar composites filled with conducting spheres confirmed the existence of a percolation transition, though with high resistance values implying no direct contact of the spheres. Tensile measurements conducted on dry material at a nominal strain rate of about 10−3 s−1 showed an increase in elastic modulus and a decrease in the fracture strength with increasing glass content. New detail was apparent in these curves and confirmed by statistical analyses. For wet specimens, in addition to a general embrittlement effect of water absorption, there was a distinct plateau or small peak in fracture strength in the range 9 to 12% glass, and an abrupt drop between 12 and 15%. The plateau can be related to favorable crack interaction effects between disconnected clusters of interfaces just below the percolation threshold. The steep increase in elastic modulus with glass content seen in the dry material vanished entirely in wet material, which behaved like a porous polymer above 6% glass, owing to osmotic interface damage within particle clusters.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Apicella, A., in International Encyclopedia of Composites, edited by Lee, S. M. (VCH Publishers, New York, 1990), Vol. 2, p. 46.Google Scholar
2.Young, R. J., in Structural Adhesives: Development in Resins and Primers, edited by Kinloch, A. J. (Elsevier, New York, 1986), p. 163.Google Scholar
3.Zallen, R., Physics of Amorphous Solids (Wiley, New York, 1983).CrossRefGoogle Scholar
4.Chan Kim, I. and Torquato, S., J. Appl. Phys. 69, 2280 (1991).CrossRefGoogle Scholar
5.Chan Kim, I. and Torquato, S., Phys. Rev. A 43, 3198 (1991).Google Scholar
6.Statistical Models for the Fracture of Disordered Media, edited by Herrmann, H. J. and Roux, S. (North-Holland, New York, 1990).Google Scholar
7.Disorder and Fracture, edited by Charmet, J.C., Roux, S., and Guyon, E., NATO ASI Series B, #235 (Plenum, New York, 1990).CrossRefGoogle Scholar
8.Duxbury, P. M., ‘Breakdown of diluted and hierarchical systems’, in Ref. 6, p. 189.Google Scholar
9.McCullough, R. L., Compos. Sci. Technol. 22, 3 (1985).CrossRefGoogle Scholar
10.Lagar'kov, A. N., Pavina, L. V., and Sarychev, A. K., Sov. Phys. JETP 66, 123 (1987).Google Scholar
11.McCullough, R. L., in Delaware Composites Design Encyclopedia, Vol 2: Micromechanical Materials Modeling (Technomic Pub., Lancaster, PA, 1985), p. 205. rGoogle Scholar
12.Negata, K., Kodama, S., Nigo, H., Kawasaki, H., Deki, S. and Mizuhata, M., Kobunshi Ronbunshu 49, 677 (1992).CrossRefGoogle Scholar
13.Veda, N. and Taya, M.Proc. 5th Int. Conf. on Composite Materials: ICCM-V (The Metallurgical Society, Warrendale, PA), p. 1727.Google Scholar
14.Mamunya, E. P., Davidenko, U.V., and Lebedev, E.V., Dokl. Akad. Nauk Ukrainskoi SSR 5, 127 (1991).Google Scholar
15.Balberg, I., Proc. Conf. on Critical Materials and Processes in a Changing World (Soc. for the Advancement of Materials and Process Engineering, Covina, CA, 1992), p. 50.Google Scholar
16.Yoshida, K., J. Phys. Soc. Jpn. 59, 4087 (1990).CrossRefGoogle Scholar
17.Gay, M. I., Oshmian, V. G., and Manevich, L. I., Dokl. Akad. Nauk SSR 305, 75 (1989).Google Scholar
18.Day, A. R., Snyder, K. A., Garboczi, E. J., Thorpe, M. F., J. Mech. Phys. Solids 40, 1031 (1992).CrossRefGoogle Scholar
19.Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids 11, 127 (1963).CrossRefGoogle Scholar
20.Hill, R., J. Mech. Phys. Solids 12, 199 (1964).CrossRefGoogle Scholar
21.Hashin, Z., J. Mech. Phys. Solids 13, 119 (1965).CrossRefGoogle Scholar
22.Ishai, O. and Cohen, L. J., Int. J. Mech. Sci. 9, 539 (1967).CrossRefGoogle Scholar
23.Eischen, J. W. and Torquato, S., J. Appl. Phys. 74, 159 (1993).CrossRefGoogle Scholar
24.Babich, V. F. and Lipatov, Yu. S., in Physico-chemistry of Polymer Multicomponent Systems (Naukova Dumka, Kiev 1968), p. 222.Google Scholar
25.Nicolais, L. and Nicodemo, L., Polym. Eng. Sci. 13, 469 (1973).CrossRefGoogle Scholar
26.Piggot, M. R. and Leidner, J., J. Appl. Polym. Sci. 18, 1619 (1974).CrossRefGoogle Scholar
27.Leidner, J. and Woodhams, R. T., J. Appl. Polym. Sci. 18, 1639 (1974).CrossRefGoogle Scholar
28.Hojo, H., Toyoshima, W., Tamura, M. and Kawamura, N., Polym. Eng. Sci. 14, 604 (1974).CrossRefGoogle Scholar
Nicolais, L. and Mashelkar, R. A.J. Appl. Polym. Sci. 20 561 (1976).CrossRefGoogle Scholar
30.Shrager, M., J. Appl. Polym. Sci. 22, 2379 (1978).CrossRefGoogle Scholar
31.Papanicolaou, G. C. and Bakos, D., J. Reinf. Plast. Compos. 11 (2), 104 (1992).CrossRefGoogle Scholar
32.Kendall, K., AIP Conf. Proc., A183, 405 (1984).Google Scholar
33.Spanoudakis, J. and Young, R. J., J. Mater. Sci. 19, 473 (1984).CrossRefGoogle Scholar
34.Spanoudakis, J. and Young, R. J., J. Mater. Sci. 19, 487 (1984).CrossRefGoogle Scholar
35.Kinloch, A. J. and Young, R. J., in Fracture Behaviour of Polymers (Applied Science Publishers, London, 1983), p. 421.Google Scholar
36.Apicella, A. and Nicolais, L., in Advances in Polymer Science, 72, Epoxy and Resins (Springer-Verlag, 1985), p. 70.Google Scholar
37.Apicella, A., Egiziano, L., Nicolais, L., and Tucci, V., J. Mater. Sci. 23, 729 (1988).CrossRefGoogle Scholar
38.Diamant, Y., Marom, G., and Broutman, L. J., J. Appl. Polym. Sci. 26, 3015 (1981).CrossRefGoogle Scholar
39.Marom, G., in Polymer Permeability (Elsevier Applied Science, 1985), p. 341.CrossRefGoogle Scholar
40.Wolf, E. G., in International Encyclopedia of Composites, edited by Lee, S. M. (VCH Publishers, New York, 1990), Vol. 6, p. 279.Google Scholar
41.Kasturiarachchi, K. A. and Pritchard, G., Composites 14, 244 (1983).CrossRefGoogle Scholar
42.Blikstad, M., Sjoblom, P.O. W., and Johannesson, T. R., J. Compos. Mater. 18, 32 (1984).CrossRefGoogle Scholar
43.Fukuda, H., Proc. Int. Symp. on Composite Material Structures, edited by Loo, T. T. and Sun, C. T. (Technomic Pub. Lancaster, PA, 1986), p. 50.Google Scholar
44.Lekatou, A., Qian, Y., Faidi, S., Lyon, S.B., and Newman, R. C., Proc. 2nd Int. Conf. on Deformation and Fracture of Composites, paper #31 (Institute of Materials, London, 1993).Google Scholar
45.Bastioli, C., Casciola, M., and Roman, G., Proc. Conf. on Controlled Interfaces in Composite Materials (Elsevier, Amsterdam, 1990), p. 569.Google Scholar
46.Biswass, A. and Sinha, P. K., Metals, Materials and Processes 3, 99 (1991).Google Scholar
47.Dewimille, B. and Bunsell, A. R., Composites 14, 35 (1983).CrossRefGoogle Scholar
48.Lekatou, A., Faidi, S. E., Lyon, S. B., and Newman, R. C., Proc. Conf. on Advances in Corrosion Protection by Organic Coatings-II (The Electrochemical Society, Pennington, NJ, 1994), p. 59.Google Scholar
49.Lekatou, A., Faidi, S.E., Ghidaoui, D., Lyon, S. B., and Newman, R. C., submitted to Composites and Composite Interfaces.Google Scholar
50.Nakanishi, Y. and Shindo, A., Proc. 4th Int. Conf. on Composite Materials, edited by Hayashi, T., Kawata, K., and Umehawa, S., Vol. 2, p. 1009, Jpn. Soc. Compos. Mater., Tokyo (1987).Google Scholar
51.Jacquement, R. and Lagrange, A., Composites (France) 30, 17 (1990).Google Scholar
52.Belliard, P., Foussard, T., Gaudin, D., and Morel, J., Actes Colloq.-IFREMER, (Constr. Nav. Compos.), 91 (1988).Google Scholar
53.Apicella, A. and Nicolais, L., Ind. Eng. Chem. Prod. Res. Dev. 23, 288 (1984).CrossRefGoogle Scholar
54.Shen, C. H. and Springer, G. S., J. Compos. Mater. 10, 2 (1976).CrossRefGoogle Scholar
55.Sekine, H., Shimomura, K., and Hamana, N., JSME Int. J., Series 1, 31, 619 (1988).Google Scholar
56.Gobalan, R., Somashebar, B. R., and Dettaguru, B., Polym. Degrad. Stab. 24, 361 (1989).CrossRefGoogle Scholar
57.Shen, C. H. and Springer, G. S., J. Compos. Mater. 11, 2 (1977).CrossRefGoogle Scholar
58.Shen, C. H. and Springer, G. S., J. Compos. Mater. 11, 250 (1977).CrossRefGoogle Scholar
59.Haque, A., Mahmood, S., Walker, L., and Jeelani, S., J. Reinf. Plast. Compos. 10, 132 (1991).CrossRefGoogle Scholar
60.Hofer, C. E. and Skaper, G., Nat. SAMPE Techn. Conf. 17 (Overcoming Material Boundaries), 1985, p. 456.Google Scholar
61.Young, R. J. and Beaumont, P. W. R., J. Mater. Sci. 10, 1343 (1975),CrossRefGoogle Scholar
62.d'Almeida, J. R. M., Composites 22, 448 (1991).CrossRefGoogle Scholar
63.Gibiansky, L. V. and Torquato, S., Phys. Rev. Lett. 71, 2927 (1993).CrossRefGoogle Scholar
64.Laycock, P. J., Lekatou, A., Faidi, S. E., Lyon, S. B., and Newman, R. C., unpublished.Google Scholar
65.Wells, D. B., Stewart, J., Herbert, A. W., Scott, P. M., and Williams, D. E., Corrosion, 45, 669 (1989).CrossRefGoogle Scholar
66.Gaudett, M. A. and Scully, J. R., Metall. Trans. A 25A, 775 (1994).CrossRefGoogle Scholar
67.Pritchard, G., Practical Boat Owner #339, 101 (March 1995).Google Scholar