Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T23:51:34.142Z Has data issue: false hasContentIssue false

Electrochemical deposition and characterization of carboxylic acid functionalized PEDOT copolymers

Published online by Cambridge University Press:  12 November 2014

Nandita Bhagwat
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
Kristi L. Kiick*
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
David C. Martin*
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
*
a)Address all correspondence to these authors. e-mail: kiick@udel.edu
b)e-mail: milty@udel.edu
Get access

Abstract

Conjugated polymer films are of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). Chemical surface characterization of the films confirmed the presence of both EDOT and EDOTacid units. Toluidene blue assays showed that the surface concentration of the carboxylic acid groups increased to a maximum of 2.75 nmoles/mm2, and the contact angle measurements confirmed the increased hydrophilicity of the films with increasing EDOTacid content (decreasing from 52.6 to 32.5 degrees). Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. The addition of EDOTacid induced a transition from a nodular, porous surface to a more dense, pleated surface structure. These methods provide a facile means for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicity and surface morphologies.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Norlin, A., Pan, J., and Leygraf, C.: Electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications III. Nanoporous and smooth carbon electrodes. J. Electrochem. Soc. 152(9), J110 (2005).CrossRefGoogle Scholar
Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., and Aziz, T.Z.: Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8(8), 623 (2007).CrossRefGoogle ScholarPubMed
Eisen, M.D.: Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing. Otol. Neurotol. 24(3), 500 (2003).CrossRefGoogle ScholarPubMed
Weiland, J.D., Liu, W.T., and Humayun, M.S.: Retinal Prosthesis, in Annual Review of Biomedical Engineering (Annual Reviews, 2005), pp. 361.Google Scholar
Mercanzini, A. and Renaud, P.: Microfabricated Cortical Neuroprostheses (CRC Press, Boca Raton, FL, 2011).CrossRefGoogle Scholar
Kim, D.H., Richardson-Burns, S.M., Povlich, L.K., Abidian, M.R., Spanninga, S., Hendricks, J.L., and Martin, D.C.: Soft, Fuzzy, and Bioactive Conducting Polymers for Improving the Chronic Performance of Neural Prosthetic Devices (CRC Press, Boca Raton, FL, 2007).Google Scholar
Groenendaal, L., Zotti, G., Aubert, P.H., Waybright, S.M., and Reynolds, J.R.: Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 15(11), 855 (2003).CrossRefGoogle Scholar
Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911 (2004).CrossRefGoogle ScholarPubMed
Groenendaal, B.L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R.: Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12(7), 481 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
Aasmundtveit, K.E., Samuelsen, E.J., Inganas, O., Pettersson, L.A.A., Johansson, T., and Ferrer, S.: Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). Synth. Met. 113(1–2), 93 (2000).Google Scholar
Meskers, S.C.J., van Duren, J.K.J., Janssen, R.A.J., Louwet, F., and Groenendaal, L.: Infrared detectors with poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) as the active material. Adv. Mater. 15(7–8), 613 (2003).CrossRefGoogle Scholar
Hohnholz, D., MacDiarmid, A.G., Sarno, D.M., and Jones, W.E.: Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition. Chem. Commun. (23), 2444 (2001).Google Scholar
Lee, J.W., Serna, F., Nickels, J., and Schmidt, C.E.: Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules 7(6), 1692 (2006).Google Scholar
Xiao, Y.H., Cui, X.Y., and Martin, D.C.: Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays. J. Electroanal. Chem. 573(1), 43 (2004).Google Scholar
Zhang, Z.Y., Tao, Y.J., Xu, X.Q., Zhou, Y.J., Cheng, H.F., and Zheng, W.W.: Multicolor electrochromism of low-bandgap copolymers based on pyrrole and 3,4-ethylenedioxythiophene: Fine-tuning colors through feed ratio. J. Appl. Polym. Sci. 129(3), 1506 (2013).Google Scholar
Zhang, C., Xu, Y., Wang, N.C., Xu, Y., Xiang, W.Q., Ouyang, M., and Ma, C.N.: Electrosyntheses and characterizations of novel electrochromic copolymers based on pyrene and 3,4-ethylenedioxythiophene. Electrochim. Acta 55(1), 13 (2009).Google Scholar
Akoudad, S., and Roncali, J.: Modification of the electrochemical and electronic properties of electrogenerated poly(3,4-ethylenedioxythiophene) by hydroxymethyl and oligo(oxyethylene)substituents. Electrochem. Commun. 2(1), 72 (2000).CrossRefGoogle Scholar
Ali, E.M., Kantchev, E.A.B., Yu, H.H., and Ying, J.Y.: Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation. Macromolecules 40(17), 6025 (2007).CrossRefGoogle Scholar
Krishnamoorthy, K., Kanungo, M., Contractor, A.Q., and Kumar, A.: Electrochromic polymer based on a rigid cyanobiphenyl substituted 3,4-ethylenedioxythiophene. Synth. Met. 124(2–3), 471 (2001).Google Scholar
Sarac, A.S., Sonmez, G., and Cebeci, F.Ã.: Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes. J. Appl. Electrochem. 33(3–4), 295 (2003).Google Scholar
Xu, J.K., Nie, G.M., Zhang, S.S., Han, X.J., Hou, J., and Pu, S.Z.: Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J. Mater. Sci. 40(11), 2867 (2005).CrossRefGoogle Scholar
Yohannes, T., Carlberg, J.C., Inganãs, O., and Solomon, T.: Electrochemical and spectroscopic characteristics of copolymers electrochemically synthesized from 3-methylthiophene and 3,4-ethylenedioxy thiophene. Synth. Met. 88(1), 15 (1997).CrossRefGoogle Scholar
Povlich, L.K., Cho, J.C., Leach, M.K., Corey, J.M., Kim, J., and Martin, D.C.: Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim. Biophys. Acta 1830(9), 4288 (2013).Google Scholar
Luo, S.C., Ali, E.M., Tansil, N.C., Yu, H.H., Gao, S., Kantchev, E.A.B., and Ying, J.Y.: Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: Thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 24(15), 8071 (2008).Google Scholar
Lee, J.Y., Jeong, E.D., Ahn, C.W., and Lee, J.W.: Bioactive conducting scaffolds: Active ester-functionalized polyterthiophene. Synth. Met. 185, 66 (2013).Google Scholar
Tiraferri, A. and Elimelech, M.: Direct quantification of negatively charged functional groups on membrane surfaces. J. Membr. Sci. 389, 499 (2012).Google Scholar
Djordjevic, I., Choudhury, N.R., Dutta, N.K., Kumar, S., Szili, E.J., and Steele, D.A.: Polyoctanediol citrate/sebacate bioelastomer films: Surface morphology, chemistry and functionality. J. Biomater. Sci., Polym. Ed. 21(2), 237 (2010).Google Scholar
Jonsson, S.K.M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Denier van der Gon, A.W., Salaneck, W.R., and Fahlman, M.: The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met. 139(1), 1 (2003).Google Scholar
Sriprachuabwong, C., Karuwan, C., Wisitsorrat, A., Phokharatkul, D., Lomas, T., Sritongkham, P., and Tuantranont, A.: Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 22(12), 5478 (2012).Google Scholar
Dobbelin, M., Marcilla, R., Tollan, C., Pomposo, J.A., Sarasua, J.R., and Mecerreyes, D.: A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) films using ionic liquids. J. Mater. Chem. 18(44), 5354 (2008).Google Scholar
Drelich, J., Wilbur, J.L., Miller, J.D., and Whitesides, G.M.: Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic hydrophilic strips. Langmuir 12(7), 1913 (1996).Google Scholar
Green, R.A., Lovell, N.H., and Poole-Warren, L.A.: Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomater. 6(1), 63 (2010).Google Scholar
Kim, D.H., Richardson-Burns, S.M., Hendricks, J.L., Sequera, C., and Martin, D.C.: Effect of immobilized nerve growth factor on conductive polymers: Electrical properties and cellular response. Adv. Funct. Mater. 17(1), 79 (2007).Google Scholar
Green, R.A., Lovell, N.H., and Poole-Warren, L.A.: Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30(22), 3637 (2009).Google Scholar
Abidian, M.R., Kim, D.H., and Martin, D.C.: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18(4), 405 (2006).Google Scholar
Richardson-Burns, S.M., Hendricks, J.L., Foster, B., Povlich, L.K., Kim, D.H., and Martin, D.C.: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28(8), 1539 (2007).Google Scholar
Luo, S.C., Sekine, J., Zhu, B., Zhao, H.C., Nakao, A., and Yu, H.H.: Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: The effect of functional groups and temperature in template-free electropolymerization. ACS Nano 6(4), 3018 (2012).Google Scholar
Bolognesi, A., DiGianvincenzo, P., Giovanella, U., Mendichi, R., and Schieroni, A.G.: Polystyrene functionalized with EDOT oligomers. Eur. Polym. J. 44(3), 793 (2008).CrossRefGoogle Scholar
Lapkowski, M. and Pron, A.: Electrochemical oxidation of poly(3,4-ethylenedioxythiophene) – “in situ” conductivity and spectroscopic investigations. Synth. Met. 110(1), 79 (2000).Google Scholar
Hwang, J., Tanner, D.B., Schwendeman, I., and Reynolds, J.R.: Optical properties of nondegenerate ground-state polymers: Three dioxythiophene-based conjugated polymers. Phys. Rev. B 67(11), (2003).Google Scholar
Blanchard, F., Carre, B., Bonhomme, F., Biensan, P., Pages, H., and Lemordant, D.: Study of poly(3,4-ethylenedioxythiophene) films prepared in propylene carbonate solutions containing different lithium salts. J. Electroanal. Chem. 569(2), 203 (2004).Google Scholar
Kiefer, R., Bowmaker, G.A., Cooney, R.P., Kilmartin, P.A., and Travas-Sejdic, J.: Cation driven actuation for free standing PEDOT films prepared from propylene carbonate electrolytes containing TBACF3SO3. Electrochim. Acta 53(5), 2593 (2008).Google Scholar
Chang, C.C., Her, L.J., and Hong, J.L.: Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery. Electrochim. Acta 50(22), 4461 (2005).Google Scholar
Lima, A., Schottland, P., Sadki, S., and Chevrot, C.: Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate. Synth. Met. 93(1), 33 (1998).Google Scholar
Hameed, N., Thomas, S.P., Abraham, R., and Thomas, S.: Morphology and contact angle studies of poly(styrene-co-acrylonitrile) modified epoxy resin blends and their glass fibre reinforced composites. eXPRESS Polym. Lett. 1(6), 345 (2007).Google Scholar
Feng, L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., Song, Y.L., Liu, B.Q., Jiang, L., and Zhu, D.B.: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14(24), 1857 (2002).Google Scholar
Lafuma, A. and Quere, D.: Superhydrophobic states. Nat. Mater. 2(7), 457 (2003).Google Scholar
Doherty, W.J., Wysocki, R.J., Armstrong, N.R., and Saavedra, S.S.: Electrochemical copolymerization and spectroelectrochemical characterization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene-methanol copolymers on indium-tin oxide. Macromolecules 39(13), 4418 (2006).Google Scholar
Supplementary material: PDF

Bhagwat et al. supplementary material

Supplementary figure

Download Bhagwat et al. supplementary material(PDF)
PDF 182.1 KB