Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T02:55:38.220Z Has data issue: false hasContentIssue false

Electromigration behavior of the Cu/Au/SnAgCu/Cu solder combination

Published online by Cambridge University Press:  31 January 2011

Tsung-Chieh Chiu*
Affiliation:
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
Kwang-Lung Lin
Affiliation:
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
*
a)Address all correspondence to this author. e-mail: longman@mail.mse.ncku.edu.tw
Get access

Abstract

The electromigration behavior of the Cu/Au/SnAgCu/Cu combination was investigated under 103 A/cm2 of current stressing at ambient temperature. The Au layer, when it acts as a cathode, was consumed continuously, and no significant compound was found at the interface. Meanwhile, Cu6Sn5 was formed at the anodic Cu layer, and the thickness of the compound increased with increasing time. The Au atoms were found to be trapped in Cu6Sn5 within the solder matrix. The AuSn4 compound precipitated while attaching to Cu6Sn5 at the Cu6Sn5/solder interface. The thermomigration effect was found to be insignificant in this work as no obvious reaction occurred at the cathode/anode sides or in the solder matrix without current stressing.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lin, Y.H., Hu, Y.C., Tsai, C.M., Kao, C.R., Tu, K.N.: In situ observation of the void formation-and-propagation mechanism in solder joints under current-stressing. Acta Mater. 53, 2029 2005CrossRefGoogle Scholar
2Zhang, L., Ou, S., Huang, J., Tu, K.N., Gee, S., Nguyen, L.: Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints. Appl. Phys. Lett. 88, 012106 2006CrossRefGoogle Scholar
3Chang, Y.W., Liang, S.W., Chen, C.: Study of void formation due to electromigration in flip-chip solder joints using Kelvin bump probes. Appl. Phys. Lett. 89, 032103 2006CrossRefGoogle Scholar
4Choi, W.J., Yeh, E.C.C., Tu, K.N.: Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization. J. Appl. Phys. 94, 5665 2003CrossRefGoogle Scholar
5Shao, T.L., Lin, K.C., Chen, C.: Electromigration studies of flip chip Sn95/Sb5 solder bumps on Cr/Cr–Cu/Cu under-bump metallization. J. Electron. Mater. 32, 1278 2003CrossRefGoogle Scholar
6Alam, M.O., Wu, B.Y., Chan, Y.C., Tu, K.N.: High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints. Acta Mater. 54, 613 2006CrossRefGoogle Scholar
7Liu, C.Y., Chen, C., Tu, K.N.: Electromigration in Sn–Pb solder strips as a function of alloy composition. J. Appl. Phys. 88, 5703 2000CrossRefGoogle Scholar
8Lee, T.Y., Tu, K.N., Kuo, S.M., Frear, D.R.: Electromigration of eutectic SnPb solder interconnects for flip chip technology. J. Appl. Phys. 89, 3189 2001CrossRefGoogle Scholar
9Lee, T.Y., Tu, K.N., Frear, D.R.: Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization. J. Appl. Phys. 90, 4502 2001CrossRefGoogle Scholar
10Yeh, Y.T., Chou, C.K., Hsu, Y.C., Chen, C., Tu, K.N.: Threshold-current density of electromigration in eutectic SnPb solder. Appl. Phys. Lett. 86, 203504 2005CrossRefGoogle Scholar
11Liu, Y.H., Lin, K.L.: Damages and microstructural variation of high-lead and eutectic SnPb composite flip chip solder bumps induced by electromigration. J. Mater. Res. 20, 2184 2005CrossRefGoogle Scholar
12Nah, J.W., Kim, J.H., Lee, H.M., Paik, K.W.: Electromigration in flip chip solder bump of 97Pb–3Sn/37Pb–63Sn combination structure. Acta Mater. 52, 129 2004CrossRefGoogle Scholar
13Huang, A.T., Tu, K.N., Lai, Y.S.: Effect of the combination of electromigration and thermomigration on phase migration and partial melting in flip chip composite SnPb solder joints. J. Appl. Phys. 100, 033512 2006CrossRefGoogle Scholar
14Nah, J.W., Paik, K.W., Suh, J.O., Tu, K.N.: Mechanism of electromigration-induced failure in the 97Pb–3Sn and 37Pb–63Sn composite solder joints. J. Appl. Phys. 94, 7560 2003CrossRefGoogle Scholar
15Hsu, Y.C., Shao, T.L., Yang, C.J., Chen, C.: Electromigration study in SnAg3.8Cu0.7 solder joints on Ti/Cr–Cu/Cu under-bump metallization. J. Electron. Mater. 32, 1222 2003CrossRefGoogle Scholar
16Shao, T.L., Chen, Y.H., Chiu, S.H., Chen, C.: Electromigration failure mechanisms for SnAg3.5 solder bumps on Ti/Cr–Cu/Cu and Ni(P)/Au metallization pads. J. Appl. Phys. 96, 4518 2004CrossRefGoogle Scholar
17Hsu, Y.C., Chou, C.K., Liu, P.C., Chen, C., Yao, D.J., Chou, T., Tu, K.N.: Electromigration in Pb-free SnAg3.8Cu0.7 solder stripes. J. Appl. Phys. 98, 033523 2005CrossRefGoogle Scholar
18Chiang, K.N., Lee, C.C., Lee, C.C., Chen, K.M.: Current crowding-induced electromigration in SnAg3.0Cu0.5 microbumps. Appl. Phys. Lett. 88, 072102 2006CrossRefGoogle Scholar
19Ye, H., Basaran, C., Hopkins, D.: Thermomigration in Pb–Sn solder joints under Joule heating during electric current stressing. Appl. Phys. Lett. 82, 1045 2003CrossRefGoogle Scholar
20Chiu, S.H., Shao, T.L., Chen, C., Yao, D.J., Hsu, C.Y.: Infrared microscopy of hot spots induced by Joule heating in flip-chip SnAg solder joints under accelerated electromigration. Appl. Phys. Lett. 88, 022110 2006CrossRefGoogle Scholar
21Huang, A.T., Gusak, A.M., Tu, K.N., Lai, Y.S.: Thermomigration in SnPb composite flip chip solder joints. Appl. Phys. Lett. 88, 141911 2006CrossRefGoogle Scholar
22Zhang, F., Li, M., Chum, C.C., Tung, C.H.: Effects of substrate metallizations on solder/underbump metallization interfacial reactions in flip-chip packages during thermal aging. J. Mater. Res. 18, 1333 2003CrossRefGoogle Scholar
23Shih, P.C., Lin, K.L.: Interfacial bonding behavior with introduction of Sn–Zn–Bi paste to Sn–Ag–Cu ball grid array package during multiple reflows. J. Mater. Res. 20, 219 2005CrossRefGoogle Scholar
24Shih, P.C., Lin, K.L.: Effect of microstructural evolution on electrical property of the Sn–Ag–Cu solder balls joined with Sn– Zn–Bi paste. J. Mater. Res. 20, 2854 2005CrossRefGoogle Scholar
25Ren, F., Nah, J.W., Tu, K.N., Xiong, B., Xu, L., Pang, J.H.L.: Electromigration induced ductile-to-brittle transition in lead-free solder joints. Appl. Phys. Lett. 89, 141914 2006CrossRefGoogle Scholar
26Zhang, L., Wang, Z.G., Shang, J.K.: Current-induced weakening of Sn3.5Ag0.7Cu Pb-free solder joints. Scripta Mater. 56, 381 2007CrossRefGoogle Scholar
27Nah, J.W., Ren, F., Paik, K.W., Tu, K.N.: Effect of electromigration on mechanical shear behavior of flip chip solder joints. J. Mater. Res. 21, 698 2006CrossRefGoogle Scholar
28Dyson, B.F., Anthony, T.R., Turnbull, D.: Interstitial diffusion of copper in tin. J. Appl. Phys. 38, 3408 1967CrossRefGoogle Scholar
29Mei, Z., Sunwoo, A.J., Morris, J.W.: Analysis of low-temperature intermetallic growth in copper–tin diffusion couples. Metall. Trans. A 23, 857 1992CrossRefGoogle Scholar
30Dyson, B.F.: Diffusion of gold and silver in tin single crystals. J. Appl. Phys. 37, 2375 1966CrossRefGoogle Scholar
31Huntington, H.B.: Electromigration in metals in Diffusion in Solids: Recent Developments, edited by A.S. Nowick and J.J. Burton (Academic Press, New York, 1975), p. 303.CrossRefGoogle Scholar
32Massalski, T.B.: Binary Alloy Phase Diagrams ASM International Materials Park, OH 1986 315Google Scholar
33Chang, C.W., Lee, Q.P., Ho, C.E., Kao, C.R.: Cross-interaction between Au and Cu in Au/Sn/Cu ternary diffusion couples. J. Electron. Mater. 35, 366 2006CrossRefGoogle Scholar
34Chen, S.W., Yen, Y.W.: Interfacial reactions in the Sn–Ag/Au couples. J. Electron. Mater. 30, 1133 2001CrossRefGoogle Scholar