Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:45:26.960Z Has data issue: false hasContentIssue false

Electrospun nylon fibers for the improvement of mechanical properties and for the control of degradation behavior of poly(lactide)-based composites

Published online by Cambridge University Press:  21 March 2012

Ramesh Neppalli
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
Carla Marega
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
Antonio Marigo
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
Madhab P. Bajgai
Affiliation:
Department of Textile Engineering, Chonbuk National University, 561-756 Jeonju, South Korea; and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3
Hak Y. Kim
Affiliation:
Department of Textile Engineering, Chonbuk National University, 561-756 Jeonju, South Korea
Suprakas Sinha Ray
Affiliation:
DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, Republic of South Africa
Valerio Causin*
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
*
a)Address all correspondence to this author. e-mail: valerio.causin@unipd.it
Get access

Abstract

Poly(lactide) (PLA) composites filled with electrospun nylon 6 fibers were prepared. This allowed us to simultaneously improve the mechanical properties and tune the degradation of the PLA matrix. The interfacial adhesion between the PLA matrix and the nylon fibers was good. The major effect of electrospun fibers on the matrix was that of modifying the semicrystalline framework, thickening the polymer lamellae. This allowed an increase in the mechanical properties of the material, and on the other hand to modify its degradation behavior. The modulus of the composites was increased up to 3-fold with respect to neat PLA. The peculiar morphology of matrix–filler interaction moreover slowed down the degradation rate of the material and improved the dimensional stability of the specimens during the degradation process. This shows the potential of electrospun fibers as a way to tune the durability of PLA-based products, widening the range of application of this promising material.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sinha Ray, S. and Okamoto, M.: Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815 (2003).Google Scholar
2.Sinha Ray, S. and Ramontjia, J.: Polylactide-based nanocomposites, in Biodegradable Polymers Blends and Composites from Renewable Resources, edited by Yu, L. (Wiley, Hoboken, NJ, 2009), pp. 389414.Google Scholar
3.Oksman, K., Skrifvars, M., and Selin, J.F.: Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63, 1317 (2003).Google Scholar
4.Graupner, N., Herrmann, A.S., and Müssig, J.: Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A 40, 810 (2009).CrossRefGoogle Scholar
5.Huda, M.S., Drzal, L.T., Misra, M., and Mohanty, A.K.: Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J. Appl. Polym. Sci. 102, 4856 (2006).CrossRefGoogle Scholar
6.Meng, Q.K., Hetzer, M., and De Kee, D.: PLA/clay/wood nanocomposites: Nanoclay effects on mechanical and thermal properties. J. Compos. Mater. 45, 1145 (2010).Google Scholar
7.Wang, L.S., Chen, H.C., Xiong, Z.C., Pang, X.B., and Xiong, C.D.: A completely biodegradable poly[(l-lactide)-co-(e-caprolactone)] elastomer reinforced by in situ poly(glycolic acid) fibrillation: Manufacturing and shape-memory effects. Macromol. Mater. Eng. 295, 381 (2010).CrossRefGoogle Scholar
8.Suryanegara, L., Nakagaito, A.N., and Yano, H.: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos. Sci. Technol. 69, 1187 (2009).Google Scholar
9.Rizvi, R., Khan, O., and Naguib, H.E.: Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym. Eng. Sci. 51, 43 (2011).Google Scholar
10.Wu, D., Wu, L., Zhou, W., Zhang, M., and Yang, T.: Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym. Eng. Sci. 50, 1721 (2010).CrossRefGoogle Scholar
11.Chiu, W.M., Chang, Y.A., Kuo, H.Y., Lin, M.H., and Wen, H.C.: A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J. Appl. Polym. Sci. 108, 3024 (2008).CrossRefGoogle Scholar
12.Zucchelli, A., Focarete, M.L., Gualandi, C., and Ramakrishna, S.: Electrospun nanofibers for enhancing structural performance of composite materials. Polym. Adv. Technol. 22, 339 (2010).Google Scholar
13.Neppalli, R., Marega, C., Marigo, A., Bajgai, M.P., Kim, H.Y., and Causin, V.: Poly(epsilon-caprolactone) filled with electrospun nylon fibres: A model for a facile composite fabrication. Eur. Polym. J. 46, 968 (2010).CrossRefGoogle Scholar
14.Neppalli, R., Marega, C., Marigo, A., Bajgai, M.P., Kim, H.Y., and Causin, V.: Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. Polymer 52, 4054 (2011).CrossRefGoogle Scholar
15.Swart, M., Olsson, R.T., Hedenqvist, M.S., and Mallon, P.E.: Organic–inorganic hybrid copolymer fibers and their use in silicone laminate composites. Polym. Eng. Sci. 50, 2143 (2010).CrossRefGoogle Scholar
16.Kim, J.S. and Reneker, D.H.: Mechanical properties of composites using ultrafine electrospun fibers. Polym. Compos. 20, 124 (1999).Google Scholar
17.Bergshoef, M.M. and Vancso, G.J.: Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv. Mater. 11, 1362 (1999).Google Scholar
18.Bayley, G.M., Hedenqvist, M., and Mallon, P.E.: Large strain and toughness enhancement of poly(dimethyl siloxane) composite films filled with electrospun polyacrylonitrile-graft-poly(dimethyl siloxane) fibres and multi-walled carbon nanotubes. Polymer 52, 4061 (2011).CrossRefGoogle Scholar
19.Matabola, K.P., de Vries, A.R., Luyt, A.S., and Kumar, R.: Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polym. Lett. 5, 636 (2011).CrossRefGoogle Scholar
20.Chen, L.S., Huang, Z.M., Dong, G.H., He, C.L., Liu, L., Hu, Y.Y., and Li, Y.: Development of a transparent PMMA composite reinforced with nanofibers. Polym. Compos. 30, 239 (2009).Google Scholar
21.Fong, H.: Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45, 2427 (2004).Google Scholar
22.Tian, M., Gao, Y., Liu, Y., Liao, Y., Xu, R., Hedin, N.E., and Fong, H.: Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48, 2720 (2007).CrossRefGoogle ScholarPubMed
23.Hindeleh, A.M. and Johnson, D.J.: The resolution of multipeak data in fiber science. J. Phys. D: Appl. Phys. 4, 259 (1971).CrossRefGoogle Scholar
24.Vonk, C.G.: Synthetic polymers in the solid state, in Small Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic press, London, 1982), p. 433.Google Scholar
25.Blundell, D.: Models for small-angle X-ray scattering from highly dispersed lamellae. Polymer (Guildf.) 19, 1258 (1978).CrossRefGoogle Scholar
26.Marega, C., Marigo, A., Cingano, G., Zannetti, R., and Paganetto, G.: Small-angle X-ray scattering from high-density polyethylene: Lamellar thickness distributions. Polymer (Guildf.) 37, 5549 (1996).CrossRefGoogle Scholar
27.Marega, C., Marigo, A., and Causin, V.: Small-angle X-ray scattering from polyethylene: Distorted lamellar structures. J. Appl. Polym. Sci. 90, 2400 (2003).Google Scholar
28.Marega, C., Causin, V., and Marigo, A.: A SAXS-WAXD study on the mesomorphic-α transition of isotactic polypropylene. J. Appl. Polym. Sci. 109, 32 (2008).Google Scholar
29.Hosemann, R. and Bagchi, S.N.: Direct Analysis of Diffraction by Matter (North-Holland Pub. Co, Amsterdam, 1962).Google Scholar
30.Avrami, M.: Granulation, phase change, and microstructure kinetics of phase change III. J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
31.Lincoln, D.M., Vaia, R.A., Wang, Z.G., Hsiao, B.S., and Krishnamoorti, R.: Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42, 9975 (2001).CrossRefGoogle Scholar
32.Homminga, D., Goderis, B., Dolbnya, I., Reynaers, H., and Groeninckx, G.: Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly(ethylene oxide). Polymer 46, 11359 (2005).CrossRefGoogle Scholar
33.Marega, C., Causin, V., Marigo, A., Ferrara, G., and Tonnaer, H.: Perkalite as an innovative filler for isotactic polypropylene-based nanocomposites. J. Nanosci. Nanotechnol. 9, 2704 (2009).Google Scholar
34.Causin, V., Yang, B.X., Marega, C., Goh, S.H., and Marigo, A.: Structure-property relationship in polyethylene reinforced by polyethylene-grafted multiwalled carbon nanotubes. J. Nanosci. Nanotech. 8, 1790 (2008).CrossRefGoogle Scholar
35.Causin, V., Yang, B.X., Marega, C., Goh, S.H., and Marigo, A.: Nucleation, structure and lamellar morphology of isotactic polypropylene filled with polypropylene-grafted multiwalled carbon nanotubes. Eur. Polym. J. 45, 2155 (2009).CrossRefGoogle Scholar
36.Causin, V., Marega, C., Saini, R., Marigo, A., and Ferrara, G.: Crystallization behavior of isotactic polypropylene based nanocomposites. J. Therm. Anal. Calorim. 90, 849 (2007).Google Scholar
37.Hambir, S., Bulakh, N., and Jog, J.P.: Polypropylene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym. Eng. Sci. 42, 1800 (2002).Google Scholar
38.Ma, J., Zhang, S., Qi, Z., Li, L., and Hu, Y.: Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J. Appl. Polym. Sci. 83, 1978 (2002).Google Scholar
39.Maiti, P., Nam, P.H., Okamoto, M., Hasegawa, N., and Usuki, A.: Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35, 2042 (2002).Google Scholar
40.Causin, V., Marega, C., Marigo, A., Ferrara, G., and Ferraro, A.: Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur. Polym. J. 42, 3153 (2006).CrossRefGoogle Scholar
41.Su, Z., Guo, W., Liu, Y., Li, Q., and Wu, C.: Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym. Bull. 62, 629 (2009).Google Scholar
42.Huang, S.M., Hwang, J.J., Liu, H.J., and Lin, L.H.: Crystallization behavior of poly(l-lactic acid)/montmorillonite nanocomposites. J. Appl. Polym. Sci. 117, 434 (2010).CrossRefGoogle Scholar
43.Li, M., Hu, D., Wang, Y., and Shen, C.: Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym. Eng. Sci. 50, 2298 (2010).CrossRefGoogle Scholar
44.Dobreva, T., Perena, J.M., Pérez, E., Benavente, R., and Garcìa, M.: Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym. Compos. 31, 974 (2010).Google Scholar
45.Shieh, Y.T., Twu, T.K., Su, C.C., Lin, R.H., and Liu, G.L.: Crystallization kinetics study of poly(l-lactic acid)/carbon nanotubes nanocomposites. J. Polym. Sci. B: Polym. Phys. 48, 983 (2010).CrossRefGoogle Scholar
46.Mat Taib, R., Ramarad, S., Mohd Ishak, Z.A., and Todo, M.: Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym. Compos. 31, 1213 (2010).Google Scholar
47.Neppalli, R., Causin, V., Marega, C., Saini, R., Mba, M., and Marigo, A.: Structure, morphology and biodegradability of poly(ε-caprolactone) based nanocomposites. Polym. Eng. Sci. (2011, in press).CrossRefGoogle Scholar
48.Sinha Ray, S., Yamada, K., Okamoto, M., and Ueda, K.: New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44, 857 (2003).CrossRefGoogle Scholar
49.Jollands, M. and Gupta, R.K.: Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 118, 1489 (2010).Google Scholar
50.Di, Y., Iannace, S., Di Maio, E., and Nicolais, L.: Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing. J. Polym. Sci. B: Polym. Phys. 43, 689 (2005).Google Scholar
51.Truss, R.W. and Yeow, T.K.: Effect of exfoliation and dispersion on the yield behavior of melt-compounded polyethylene-montmorillonite nanocomposites. J. Appl. Polym. Sci. 100, 3044 (2006).Google Scholar
52.Pukanszky, B., Mudra, I., and Staniek, P.: Relation of crystalline structure and mechanical properties of nucleated polypropylene. J. Vinyl Add. Technol. 3, 53 (1997).Google Scholar
53.Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., and Kenny, J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95, 2126 (2010).CrossRefGoogle Scholar
54.Zhou, Q. and Xanthos, M.: Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 93, 1450 (2008).Google Scholar
55.Sinha Ray, S., Yamada, K., Okamoto, M., and Ueda, K.: Control of biodegradability of polylactide via nanocomposite technology. Macromol. Mater. Eng. 288, 203 (2003).Google Scholar
56.Paul, M.A., Delcourt, C., Alexandre, M., Degee, P., Monteverde, F., and Dubois, P.: Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym. Degrad. Stab. 87, 535 (2005).Google Scholar
57.Mei, F., Zhong, J.S., Yang, X.P., Ouyang, X.Y., Zhang, S., Hu, X.Y., Ma, Q., Lu, J.G., Ryu, S.K., and Deng, X.L.: Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8, 3729 (2007).Google Scholar