Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T23:58:52.507Z Has data issue: false hasContentIssue false

Energetics in the brownmillerite-perovskite pseudobinary Ca2Fe2O5-CaTiO3

Published online by Cambridge University Press:  03 March 2011

T.R.S. Prasanna
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544-1003
A. Navrotsky
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544-1003
Get access

Abstract

The energetics of intermediate phases in the Ca2Fe2O5-CaTiO3 pseudobinary system was determined by high temperature solution calorimetry. The results suggest that both the intermediate compounds Ca3Fe2TiO8 and Ca4Fe2Ti2O11 are entropically stabilized because their enthalpies of formation are positive with respect to a mixture of Ca2Fe2O5 and CaTiO3. At high temperatures, the configurational entropy of the random distribution of Fe and Ti ions on the octahedral sites appears sufficient to stabilize the intermediate phases. The enthalpies of formation from the oxides at 1073 K of Ca2Fe2O5, Ca3Fe2TiO8, and Ca4Fe2Ti2O11 are −45.0 ± 3.8, −123.7 ± 8.0, and −192.7 ± 11.2 kJ/mol, respectively. Their enthalpies of formation from the elements at 298 K are −2139.8 ± 4.4, −3798.4 ± 8.6, and −5447.3 ± 12.2 kJ/mol, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Grenier, J. C., Darriet, J., Pouchard, M., and Hagenmuller, P., Mater. Res. Bull. XI, 1219 (1976).CrossRefGoogle Scholar
2Grenier, J. C., Menil, F., Pouchard, M., and Hagenmuller, P., Mater. Res. Bull. XIII, 329 (1978).CrossRefGoogle Scholar
3Hovmoller, S., Zou, X., Wang, D. N., González-Calbet, J. M., and Vallet-Regí, M., J. Solid State Chem. 77, 316 (1988).CrossRefGoogle Scholar
4Causa, M. T., Zysler, R. D., Tovar, M., Vallet-Regí, M., and González-Calbet, J. M., J. Solid State Chem. 98, 25 (1992).CrossRefGoogle Scholar
5Shin, S., Yonemura, M., and Ikawa, H., Mater. Res. Bull. XIII, 1017 (1978).CrossRefGoogle Scholar
6Shin, S., Hatakeyama, Y., Ogawa, K., and Shimomura, K., Mater. Res. Bull. XIV, 133 (1979).CrossRefGoogle Scholar
7Goodenough, J. B., Ruiz-Diaz, J.E., and Zhen, Y. S., Solid State Ionics 44, 21 (1990).CrossRefGoogle Scholar
8Navrotsky, A., Phys. Chem. Minerals 2, 89 (1977).CrossRefGoogle Scholar
9Brown, N. and Navrotsky, A., Am. Miner. (1994, in press).Google Scholar
10Robie, R. A., Hemingway, B. S., and Fisher, J. R., U.S. Geological Survey Bulletin, No. 1452 (1978).Google Scholar
11Akaogi, M. and Navrotsky, A., Phys. Chem. Minerals 10, 166 (1984).CrossRefGoogle Scholar
12Leinenweber, K. and Navrotsky, A., Phys. Chem. Minerals 16, 497 (1989).Google Scholar
13Kiseleva, I. A., Geokhimiya 12, 1811 (1979).Google Scholar
14Takayama-Muromachi, E. and Navrotsky, A., J. Solid State Chem. 72, 244 (1988).CrossRefGoogle Scholar