Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T01:27:18.736Z Has data issue: false hasContentIssue false

Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure

Published online by Cambridge University Press:  31 January 2011

G. He*
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
W. Löser
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
J. Eckert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
L. Schultz
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
Get access

Abstract

A bulk metallic glass-forming Ti–Cu–Ni–Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hexagonal-close-packed-Ti solid solution precipitates and a few Ti3Sn, β –(Cu, Sn) grains dispersed in a glassy matrix. The composite microstructure can avoid the development of the highly localized shear bands typical for the room-temperature deformation of monolithic glasses. Instead, highly developed shear bands with evident protuberance are observed, resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W.L., MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
2.Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
3.Liu, C.T., Heatherly, L., Eaton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A., Metall. Mater. Trans. 29A, 1811 (1998).CrossRefGoogle Scholar
4.Choi-Yim, H., Busch, R., Köter, U., and Johnson, W.L., Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
5.Eckert, J., Kuebler, A., and Schultz, L., J. Appl. Phys. 85, 7112 (1999).CrossRefGoogle Scholar
6.Fan, C. and Inoue, A., Mater. Trans., JIM 40, 42 (1999).Google Scholar
7.Dandliker, R.B., Conner, R.D., and Johnson, W.L., J. Mater. Res. 13, 2896 (1998).CrossRefGoogle Scholar
8.Kim, C.P., Busch, R., Masuhr, A., Choi-Yim, H., and Johnson, W.L., Appl. Phys. Lett. 79, 1456 (2001).CrossRefGoogle Scholar
9.Conner, R.D., Dandliker, R.B., and Johnson, W.L.. Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
10.Choi-Yim, H. and Johnson, W.L., Appl. Phys. Lett. 71, 3808 (1997).CrossRefGoogle Scholar
11.Hays, C.C., Kim, C.P., and Johnson, W.L., Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle Scholar
12.Szuecs, F., Kim, C.P., and Johnson, W.L., Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
13.Kün, U., Eckert, J., Mattern, N., and Schultz, L., Appl. Phys. Lett. 80, 2478 (2002).CrossRefGoogle Scholar
14.Inoue, A., Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
15.Fan, C., Ott, R.T., and Hufnagel, T.C., Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
16.Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
17.Zhang, T. and Inoue, A., Mater. Trans., JIM 39, 1001 (1998).Google Scholar
18.Bian, Z., He, G., and Chen, G.L., Scripta Mater. 46, 407 (2002).CrossRefGoogle Scholar