Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:34:51.731Z Has data issue: false hasContentIssue false

Environment and time dependent hardness in zirconia

Published online by Cambridge University Press:  03 March 2011

A.S. Pereira
Affiliation:
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91500-Porto Alegre-RS, Brasil
J.A.H. da Jornada
Affiliation:
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91500-Porto Alegre-RS, Brasil
Get access

Abstract

The microhardness of monoclinic ZrO2 single-crystals was measured in different environments: air, water, and toluene. An indentation creep process at room temperature was observed for the measurements in moist media pointing for a water-activated plastic relaxation mechanism. This effect is discussed employing the models previously proposed to explain similar behaviors in ZrO2 and other nonmetallic materials. A possible correlation with the conditions for the nucleation in phase transitions is proposed.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Advances in Ceramics 12: Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H. (The American Ceramics Society, Westerville, OH, 1984).Google Scholar
2Kobayashi, K., Kuwajima, H., and Masaki, T., Solid State Ionics 3–4, 489 (1981).CrossRefGoogle Scholar
3Readey, M. J., Heuer, A. H., and Steinbrech, R. W., J. Am. Ceram. Soc. 71, C-2 (1988).CrossRefGoogle Scholar
4Carter, G. M., Henshall, J. L., and Hooper, R. M., J. Am. Ceram. Soc. 71, C-270 (1988).Google Scholar
5Sato, T. and Shimada, M., J. Am. Ceram. Soc. 67, C-212 (1984).Google Scholar
6Sato, T. and Shimada, M., J. Am. Ceram. Soc. 68, 356 (1985).CrossRefGoogle Scholar
7Yoshimura, M., Noma, T., Kawabata, K., and SŌmiya, S., J. Mater. Sci. 6, 465 (1987).Google Scholar
8Jue, J. F., Chen, J., and Virkar, A. V., J. Am. Ceram. Soc. 74, 1811 (1991).CrossRefGoogle Scholar
9da Jornada, J. A. H., Piermarini, G. J., and Block, S., J. Am. Ceram. Soc. 70, 628 (1987).CrossRefGoogle Scholar
10Pereira, A. S. and da Jornada, J. A. H., High Pressure Research 7, 99 (1991).CrossRefGoogle Scholar
11Ohtaka, O., Yamanaka, T., Kume, S., Ito, E., and Navrotsky, A., J. Am. Ceram. Soc. 74, 505 (1991).CrossRefGoogle Scholar
12Hanneman, R. E. and Westbrook, J. H., Philos. Mag. 18, 73 (1968).CrossRefGoogle Scholar
13Tomozawa, M. and Hirao, K., J. Mater. Sci. Lett. 6, 867 (1987).CrossRefGoogle Scholar
14Han, W-T. and Tomozawa, M., J. Am. Ceram. Soc. 73, 3626 (1990).CrossRefGoogle Scholar
15Nagabhooshanam, M. and Dumke, V. R., J. Mater. Sci. 27, 2377 (1992).CrossRefGoogle Scholar
16First, R. C. and Heuer, A. H., private communication.Google Scholar
17Guillou, M-O., Carter, G. M., Hooper, R. M., and Henshall, J. L., J. Hard Mater. 1, 65 (1990).Google Scholar
18Han, W-T. and Tomozawa, M., J. Am. Ceram. Soc. 72, 1837 (1989).CrossRefGoogle Scholar
19Michalske, T. A. and Freimann, S. W., J. Am. Ceram. Soc. 66, 284 (1983).CrossRefGoogle Scholar
20Michalske, T. A. and Bunker, B. C., J. Appl. Phys. 56, 2686 (1984).CrossRefGoogle Scholar
21Lange, F. F., Dunlop, G. L., and Davis, B. I., J. Am. Ceram. Soc. 69, 237 (1986).CrossRefGoogle Scholar
22Li, W. B., Henshall, J. L., Hooper, R. M., and Easterling, K. E., Acta Metall. Mater. 39, 3099 (1991).CrossRefGoogle Scholar
23Lankford, J., J. Mater. Sci. Lett. 8, 947 (1989).CrossRefGoogle Scholar
24Block, S., da Jornada, J. A. H., and Piermarini, G. J., J. Am. Ceram. Soc. 68, 497 (1985).CrossRefGoogle Scholar
25Heuer, A. H. and Rühle, M., Acta Metall. 33, 2101 (1985).CrossRefGoogle Scholar