Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T03:36:32.246Z Has data issue: false hasContentIssue false

Epitaxial growth of Si1−xGex on Si(100)2 × 1: A molecular-dynamics study

Published online by Cambridge University Press:  31 January 2011

Stéphane Ethier
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches minces, Université de Montréal, Case postale 6128, succursale A, Montréal, Québec H3C 3J7, Canada
Laurent J. Lewis
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches minces, Université de Montréal, Case postale 6128, succursale A, Montréal, Québec H3C 3J7, Canada
Get access

Abstract

We use molecular-dynamics simulations to study the growth of pure Si, Si0.5Ge0.5, and pure Ge on the 2 × 1 reconstructed surface of Si(100) in a way appropriate to the fabrication of thin films by the method of molecular-beam epitaxy (MBE), namely sequential deposition of energetic atoms. The atoms interact with one another via effective potentials of the Stillinger–Weber form, with parameters adjusted such as to describe all possible types of triplet interactions. Motivated by numerous experimental studies of MBE-grown films, we investigate in particular the structure of the deposits as a function of substrate temperature. We find in all three cases that at low substrate temperatures, poorly ordered structures form, while at high substrate temperatures, epitaxial growth takes place. The presence of Ge limits the number of crystalline overlayers that form, even though it appears to favor a more-ordered structure in the initial stages of growth. For pure Ge epitaxy, in particular, only the first three layers are crystalline, after which growth appears to proceed by the formation of islands, reminiscent of the Stranski–Krastanow growth scheme, and in qualitative agreement with recent experimental and theoretical work. In all samples, annealing improves the quality of the films—at least when grown at sufficiently high substrate temperatures. The interdiffusion of the species at the substrate-deposit interface is also examined.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1See, for instance, People, R., IEEE, J. Quantum Electron. QE-22 1696 (1986); R. People, J.C. Bean, D.V. Lang, A.M. Sergent, H. L. Stormer, K. W. Wecht, R. T. Lynch, and K. Baldwin, Appl. Phys. Lett. 45, 1231 (1984); R. People, J.C. Bean, and D.V. Lang, J. Vac. Sci. Technol. A3, 3, 846 (1985).Google Scholar
2See, for instance, various articles in Deposition Processes, Parts I and II, MRS Bull. XIII, No. 11 and 12, November 1988.Google Scholar
3Herman, M.A. and Sitter, H., in Molecular-Beam Epitaxy: Fundamentals and Current Status, edited by Panish, M. B., Springer Series in Materials Science (Springer, Berlin, 1989), Vol. 7; see also various articles in The Technology and Physics of Molecular-Beam Epitaxy, edited by E. H. C. Parker (Plenum Press, New York, 1985).CrossRefGoogle Scholar
4Jorke, H. and Herzog, H. J., in Proc. 1st Int. Symp. on Silicon Molecular Beam Epitaxy, edited by Bean, J. C. (Electrochemical Soc., Pennington, NJ, 1985), p. 352; G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H.J. Herzog, Phys. Rev. Lett. 54, 2441 (1985); H. Jorke, H. J. Herzog, and H. Kibbel, Phys. Rev. B 40, 2005 (1989).Google Scholar
5LeGoues, F.K., Kesan, V.P., Iyer, S.S., Tersoff, J., and Tromp, R., Phys. Rev. Lett. 64, 2038 (1990); F.K. LeGoues, M. Copel, and R. Tromp, Phys. Rev. Lett. 63, 1826 (1989); F.K. LeGoues, V.P. Kesan, and S. S. Iyer, Phys. Rev. Lett. 64, 408 (1990).Google Scholar
6Woicik, J. C., Bouldin, C. E., Bell, M. I., Cross, J. O., Tweet, D. J., Swanson, B.D., Zhang, T. M., Sorensen, L.B., King, C.A., Hoyt, J.L., Pianetta, P., and Gibbons, J. F., Phys. Rev. B 43, 2419 (1991).Google Scholar
7Williams, A. A., Thornton, J. M.C., Macdonald, J.E., Silfhout, R.G. van, Veen, J. F. van der, Finney, M. S., Johnson, A. D., and Norris, C., Phys. Rev. B 43, 5001 (1991).Google Scholar
8Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990); D. J. Eaglesham, H-J. Gossmann, and M. Cerullo, Phys. Rev. Lett. 63, 1227 (1990).CrossRefGoogle Scholar
9Mo, Y-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).CrossRefGoogle Scholar
10Vlieg, E., Gon, A.W. Denier van der, Veen, J.F. van der, Mcdonald, J.E., and Norris, C., Phys. Rev. Lett. 61, 2241 (1988).CrossRefGoogle Scholar
11Pearsall, T.P., Vandenberg, J.M., Hull, R., and Bonar, J.M., Phys. Rev. Lett. 63, 2104 (1989).CrossRefGoogle Scholar
12Neddermeyer, H. and Tosch, S., Phys. Rev. B 38, 5784 (1988).CrossRefGoogle Scholar
13Qteish, A. and Molinari, E., Phys. Rev. B 42, 7090 (1990).Google Scholar
14Tersoff, J., Phys. Rev. B 43, 9377 (1991).CrossRefGoogle Scholar
15Gironcoli, S. de, Gianozzi, P., and Baroni, S., Phys. Rev. Lett. 66, 2116 (1991).CrossRefGoogle Scholar
16Koiller, B. and Robbins, M.O., Phys. Rev. B 40, 12554 (1989).CrossRefGoogle Scholar
17See, for instance, numerous articles in Atomic-Scale Calculations in Materials Science, edited by Tersoff, J., Vanderbilt, D., and Vitek, V. (Mater. Res. Soc. Symp. Proc. 141, Pittsburgh, PA, 1989).Google Scholar
18Gawlinski, E.T. and Gunton, J.D., Phys. Rev. B 36, 4774 (1987).CrossRefGoogle Scholar
19Schneider, M., Schuller, I. K., and Rahman, A., Phys. Rev. B 36, 1340 (1987).Google Scholar
20Schuller, I. K., in Ref. 2, p. 23.Google Scholar
21Kwon, I., Biswas, R., Grest, G.S., and Soukoulis, C.M., Phys. Rev. B 41, 3678 (1990).CrossRefGoogle Scholar
22Luedtke, W. D. and Landman, Uzi, Phys. Rev. B 40, 11733 (1989); U. Landman, W. D. Luedtke, M. W. Ribarsky, R. N. Barnett, and C.L. Cleveland, Phys. Rev. B 37, 4637 (1988); W.D. Luedtke, U. Landman, M. W. Ribarsky, R. N. Barnett, and C. L. Cleveland, Phys. Rev. B 37, 4647 (1988).Google Scholar
23Dodson, B.W., Phys. Rev. B 36, 1068 (1987).Google Scholar
24Garrison, B.J., Miller, M.T., and Brenner, D.W., in Ref. 17, p. 419.Google Scholar
25Khor, K.E. and Sarma, S. Das, Phys. Rev. B 36, 7733 (1987).CrossRefGoogle Scholar
26Lampinen, J., Nieminen, R. M., and Kaski, K., Surf. Sci. 203, 201 (1988).CrossRefGoogle Scholar
27Gilmer, G. H. and Bakker, A. F., in Computer-Aided Innovation of New Materials, edited by Doyama, M., Suzuki, T., Kihara, J., and Yamamoto, R. (Elsevier, Amsterdam).Google Scholar
28Recent studies of bulk Si-Ge alloys include Qteish, A. and Resta, R., Phys. Rev. B 37, 1308 (1988); ibid., 6983 (1988); M. I. Alonso and K. Winer, Phys. Rev. B 39, 10056 (1989).Google Scholar
29A preliminary account of this work has been given in Ethier, S. and Lewis, L. J., in Evolution of Thin Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J. Y., and Srolovitz, D. J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), p. 371.Google Scholar
30Stranski, I. N. and Krastanow, Von L., Akad. Wiss. Lit. Mainz Math.-Natur. Kl. lib 146, 797 (1939).Google Scholar
31Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
32Broughton, J.Q. and Li, X.P., Phys. Rev. B 35, 9120 (1987).CrossRefGoogle Scholar
33Khor, K.E. and Sarma, S. Das, Phys. Rev. B 38, 3318 (1988).CrossRefGoogle Scholar
34Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
35Biswas, R. and Hamann, D.R., Phys. Rev. Lett. 55, 2001 (1985).CrossRefGoogle Scholar
36Cowley, E. R., Phys. Rev. Lett. 60, 2379 (1988).Google Scholar
37Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985). Pertinent applications of the method include S. Ihara, S. L. Ho, T. Uda, and M. Hirao, Phys. Rev. Lett. 65, 1909 (1990); F. Ancilotto, W. Andreoni, A. Selloni, R. Car, and M. Parrinello, Phys. Rev. Lett. 65, 3148 (1990); M. Needels, M.C. Payne, and J. D. Joannopoulos, Phys. Rev. Lett. 58, 1765 (1987).Google Scholar
38Ito, T., Khor, K.E., and Sarma, S. Das, Phys. Rev. B 40, 9715 (1989).CrossRefGoogle Scholar
39Khor, K. E. and Sarma, S. Das, Phys. Rev. B 43, 9992 (1991).CrossRefGoogle Scholar
40Ding, K. and Andersen, H. C., Phys. Rev. B 34, 6987 (1986).Google Scholar
41Allen, M.P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
42Dismukes, J.P., Ekstrom, L., and Paff, R.J., J. Phys. Chem. 68, 3021 (1964).CrossRefGoogle Scholar
43Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971), Chap. 9.Google Scholar
44Lewis, L. J. and Klein, M. L., in Dynamical Properties of Solids, edited by Horton, G. K. and Maradudin, A. A. (North-Holland, Amsterdam, 1990), Vol. 6, Chap. 7, p. 383.Google Scholar
45Tsao, J. Y., Chason, E., Koehler, U., and Hamers, R., Phys. Rev. B 40, 11951 (1989).Google Scholar