Published online by Cambridge University Press: 31 January 2011
Nanoindentation methods are well suited for probing the mechanical properties of a heterogeneous surface, since the probe size and contact volumes are small and localized. However, the nanoindentation method may introduce errors in the computed mechanical properties when indenting near the interface between two materials having significantly different mechanical properties. Here we examine the case where a soft material is loaded in close proximity to an interface of higher modulus, such as the case when indenting bone near a metallic implant. The results are derived from both an approximate analytical quarter space solution and a finite element model, and used to estimate the error in indentation-determined elastic modulus as a function of the distance from the apex of contact to the dissimilar interface, for both Berkovich and spherical indenter geometries. Sample data reveal the potential errors in mechanical property determination that can occur when indenting near an interface having higher stiffness, or when characterizing strongly heterogeneous materials. The results suggest that caution should be used when interpreting results in the near-interfacial region.