Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:51:36.655Z Has data issue: false hasContentIssue false

Evaluation of a substrate pretreatment for hot filament CVD of diamond

Published online by Cambridge University Press:  03 March 2011

K. L. Menningen
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
M. A. Childs
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
H. Toyoda
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
L. W. Anderson
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
J. E. Lawler
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
Get access

Extract

The absolute concentration of methyl radicals (CH3) and the mole fraction of acetylene (C2H2) are measured in a hot filament chemical vapor deposition (CVD) system both during and after an initial pretreatment that has been used successfully in microwave plasma and oxyacetylene torch CVD systems to produce more uniform and higher density crystal nucleation. The pretreatment technique, which consists of deposition for a relatively short time with a high input concentration of hydrocarbon in the feed gas, was studied for both methane (CH4) and C2H2 as the input hydrocarbon diluted in H2. Scanning electron micrographs of diamond films deposited under the conditions studied indicate that the pretreatment using CH4 is not effective in increasing the crystal nucleation density, but is moderately effective in increasing the crystal size. The C2H2 pretreatment has no apparent effect upon either the crystal size or nucleation density. The spectroscopie measurements suggest that the surface condition of the filament is the prominent factor affecting the gas phase chemistry both during and after the pretreatment stage.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).Google Scholar
2Suzuki, K., Sawabe, A., Yasuda, H., and Inuzuka, T., Appl. Phys. Lett. 50, 728 (1987).Google Scholar
3Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).Google Scholar
4Matsumoto, S., J. Mater. Sci. Lett. 4, 600 (1985).Google Scholar
5Morrish, A. A. and Pehrsson, P. E., Appl. Phys. Lett. 59, 417 (1991).Google Scholar
6Hartnett, T., Miller, R., Montanari, D., Willingham, C., and Tustison, R., J. Vac. Sci. Technol. A 8, 2129 (1990).Google Scholar
7Ravi, K. V. and Koch, C. A., Appl. Phys. Lett. 57, 348 (1990).Google Scholar
8Stoner, B. R., Williams, B. E., Wolter, S. D., Nishimura, K., and Glass, J. T., J. Mater. Res. 7, 257 (1992).CrossRefGoogle Scholar
9Bou, P., Vandenbulcke, L., Herbin, R., and Hillion, F., J. Mater. Res. 7, 2151 (1992).CrossRefGoogle Scholar
10Barnes, P. N. and Wu, R. L. C., Appl. Phys. Lett. 62, 37 (1993).Google Scholar
11Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
12Lambrecht, W. R., Lee, C. H., Segall, B., Angus, J. C., Li, Z., and Sunkara, M., Nature 364, 607 (1993).Google Scholar
13Childs, M. A., Menningen, K. L., Chevako, P., Spellmeyer, N. W., Anderson, L. W., and Lawler, J. E., Phys. Lett. A 171, 87 (1992).CrossRefGoogle Scholar
14Menningen, K. L., Childs, M. A., Chevako, P., Toyoda, H., Anderson, L. W., and Lawler, J. E., Chem. Phys. Lett. 204, 573 (1993).Google Scholar
15Davidson, D. F., Chang, A. Y., Di Rosa, M. D., and Hanson, R. K., J. Quant. Spectrosc. Radiat. Transfer 49, 559 (1993).Google Scholar
16Toyoda, H., Childs, M. A., Menningen, K. L., Anderson, L. W., and Lawler, J. E., J. Appl. Phys. (in press).Google Scholar
17Celii, F. G. and Butler, J. E., Appl. Phys. Lett. 54, 1031 (1989).Google Scholar
18Kweon, D-W. and Lee, J-Y., Mater. Res. Bull. XXVII, 783 (1992).Google Scholar
19Hsu, W. L., Appl. Phys. Lett. 59, 1427 (1992).Google Scholar
20Childs, M. A., Menningen, K. L., Toyoda, H., Ueda, Y., Anderson, L. W.., and Lawler, J. E., unpublished research.Google Scholar
21Jansen, F., Chen, I., and Machonkin, M. A., J. Appl. Phys. 66, 5749. (1989).CrossRefGoogle Scholar
22Hsu, W. L., J. Appl. Phys. 72, 3102 (1992).Google Scholar