Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T23:25:12.742Z Has data issue: false hasContentIssue false

Evidence of transition metal diffusion during hydrothermal ceramic film growth: Ba(Ti,Zr)O3 on layered Ti–Zr alloy

Published online by Cambridge University Press:  31 January 2011

Alejandra V. Alvarez
Affiliation:
Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Depto. de Fisica Avenida Blanco Encalada 2008, Santiago-3, Chile
V. M. Fuenzalida*
Affiliation:
Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Depto. de Fisica Avenida Blanco Encalada 2008, Santiago-3, Chile
*
a)Address all correspondence to this author.
Get access

Abstract

Ti–Zr alloy thin films of 20–60 nm in thickness were evaporated on Pt-coated silicon wafers. The films exhibited a layered Ti–Zr depth distribution. The films were then treated hydrothermally in 0.25 M Ba(OH)2 at 150 and 200 °C for 4–8 h. Films treated at 150 °C did not exhibit reflections from the Ba(TixZr1−x)O3 perovskite structure by x-ray diffraction, although a slight barium content was detected by x-ray photoelectron spectrometry. On the other hand, the films treated hydrothermally at 200 °C revealed reflections corresponding to perovskite Ba(TixZr1−x)O3. These films exhibited a homogeneous titanium and zirconium depth distribution, as shown by x-ray photoelectron spectroscopy and Auger depth profiles, proving that either titanium or zirconium ions diffuse during the hydrothemal treatment. The initial Ti–Zr film was completely consumed during the hydrothermal process, leading to a film of homogeneous composition (Ba, Ti, and Zr) up to the interface with the platinum layer.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoo, S.E., Ishizawa, N., Hayashi, M., and Yoshimura, M., Rep. Res. Lab. Eng. Mater., Tokyo Inst. Technol. 16, 39 (1991).Google Scholar
2.Fuenzalida, V.M. and Pilleux, M.E., J. Mater. Res. 10, 2749 (1995).CrossRefGoogle Scholar
3.Pilleux, M.E., Grahmann, C.R., Fuenzalida, V.M., and Avila, R.E., Appl. Surf. Sci. 65/66, 283 (1993).CrossRefGoogle Scholar
4.Kuajiyoshi, K., Tomuono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 78, 1521 (1995).CrossRefGoogle Scholar
5.Matsumoto, Y., Adachi, H., and Hombo, J., Denki Kagaku 61, 915 (1993).CrossRefGoogle Scholar
6.Herbert, J. M., Ceramic Dielectrics and Capacitors (Gordon and Breach, Langhorne, PA, 1992), pp. 156 and 226.Google Scholar
7.Hirata, Y. and Kawazoe, T., J. Mater. Res. 11, 3071 (1996).CrossRefGoogle Scholar
8.Wu, T.B., Wu, C.M., and Chen, M.L., Appl. Phys. Lett. 69, 2659 (1996).CrossRefGoogle Scholar
9.Fuenzalida, V.M., Beltran, N., Grahmann, C., and Perez, M., J. Vac. Sci. Technol. A7, 3205 (1989).CrossRefGoogle Scholar
10. Coating Materials and Targets (Balzers Limited, Liechtenstein, 1995), p. 47.Google Scholar
11.Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corp., Eden Prairie, MN, 1992).Google Scholar
12. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1990).Google Scholar
13.Pilleux, M.E. and Fuenzalida, V.M., J. Appl. Phys. 74, 4664 (1993).CrossRefGoogle Scholar
14.Shi, E., Cho, C.R., Jang, M.S., Jeong, S.Y., and Kim, H.J., J. Mater. Res. 9, 2914 (1994).CrossRefGoogle Scholar