Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T01:02:51.708Z Has data issue: false hasContentIssue false

Evolution of constitution, structure, and mechanical properties in Fe–Ti–Zr–B heterogeneous multiphase composites

Published online by Cambridge University Press:  01 January 2011

Jin Man Park
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
Do Hyang Kim*
Affiliation:
Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
Ki Buem Kim
Affiliation:
Department of Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea
Norbert Mattern
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany
Jürgen Eckert
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and TU Dresden, Institute of Materials Science, D-01062 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: dohkim@yonsei.ac.kr
Get access

Abstract

The constituent phases, the microstructure, and the mechanical properties of a series of Fe87–xTi7Zr6Bx (x = 0, 2, 4, 6, 8, 10, and 12) alloys produced by copper mold casting were investigated. Partial substitution of iron by boron in the Fe87Ti7Zr6 ultrafine eutectic alloy induces phase/microstructural evolution and simultaneously changes the mechanical properties. In the composition range of 2 ≤ x ≤ 6, the typical lamellar structure slightly changes into a spherical cellular-type eutectic. For 8 ≤ x ≤ 12, multiphase composites containing a glassy phase form. The ultrafine eutectic composites exhibit a high compressive strength of ~2.9–3.1 GPa and a distinct plasticity of ~2–8%, whereas the glassy matrix composites show a high strength of ~3.1–3.3 GPa but no observable macroscopic plasticity before failure. These findings reveal that the plasticity of heterogeneous multiphase composites is strongly related to the length scale variables and the crystallinity of the constituent phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Flemings, M.C.: Solidification Processing (McGraw-Hill, New York, 1974).Google Scholar
2.Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
3.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).Google Scholar
4.He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
5.Park, J.M., Kim, T.E., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031903 (2008).Google Scholar
6.Qiao, J.W., Wang, S., Zhang, Y., Liaw, P.K., and Chen, G.L.: Large plasticity and tensile necking of Zr-based bulk metallic glass matrix composites synthesized by the bridgman solidification. Appl. Phys. Lett. 94, 151905 (2009).Google Scholar
7.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetrious, M.D., and Johnson, W.L.: Designing bulk metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).Google Scholar
8.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).CrossRefGoogle ScholarPubMed
9.Louzguine, D.V., Kato, H., Louzguina, L.V., and Inoue, A.: High-strength binary Ti–Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).Google Scholar
10.Shi, L., Ma, H., Liu, T., Xu, J., and Ma, E.: Microstructure and compressive properties of chill-cast Mg–Al–Ca alloys. J. Mater. Res. 21, 613 (2006).Google Scholar
11.Park, J.M., Mattern, N., Kühn, U., Eckert, J., Kim, K.B., Kim, W.T., Chattopadhyay, K., and Kim, D.H.: High strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. J. Mater. Res. 24, 2605 (2009).Google Scholar
12.Bhadeshia, H.K.D.H. and Honeycombe, R.W.K.: Steel: Microstructure and Properties, 3rd ed. (Butterworth-Heinemann Press, Oxford, UK, 2006).Google Scholar
13.Shen, B., Men, H., and Inoue, A.: Fe-based bulk glassy alloy composite containing in situ formed α-(Fe, Co) and (Fe, Co)23B6 microcrystalline grains. Appl. Phys. Lett. 89, 101915 (2006).CrossRefGoogle Scholar
14.Guo, S.F., Liu, L., Li, N., and Li, Y.: Fe-based bulk metallic glass matrix composite with large plasticity. Scr. Mater. 62, 329 (2010).CrossRefGoogle Scholar
15.Werniewicz, K., Kühn, U., Mattern, N., Bartusch, B., Eckert, J., Das, J., Schultz, L., and Kulik, T.: New Fe–Cr–Mo–Ga–C composites with high compressive strength and large plasticity. Acta Mater. 55, 3513 (2007).Google Scholar
16.Li, R., Liu, G., Stoica, M., and Eckert, J.: FeCo-based multiphase composites with high strength and large plastic deformation. Intermetallics 18, 134 (2010).CrossRefGoogle Scholar
17.Park, J.M., Sohn, S.W., Kim, T.E., Kim, K.B., Kim, W.T., and Kim, D.H.: Nanostructure-dendrite composites in the Fe–Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007).Google Scholar
18.Park, J.M., Kim, K.B., Lee, M.H., Kim, W.T., Eckert, J., and Kim, D.H.: High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).Google Scholar
19.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass. Acta Mater. 52, 4121 (2004).Google Scholar
20.Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetrious, M.D., and Johnson, W.L.: Development of tough, low density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U.S.A. 105, 20136 (2008).Google Scholar
21.Park, J.M., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: Propagation of shear bands and accommodation of shear strain in the Fe56Nb4Al40 ultrafine eutectic-dendrite composite. Appl. Phys. Lett. 92, 091910 (2008).CrossRefGoogle Scholar
22.Louzguine, D.V., Kato, H., and Inoue, A.: High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).Google Scholar
23.Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).Google Scholar
24.Park, J.M., Kim, D.H., Kim, K.B., Fleury, E., Lee, M.H., Kim, W.T., and Eckert, J.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity. J. Mater. Res. 23, 2984 (2008).Google Scholar
25.Ma, H., Shi, L.L., Xu, J., and Ma, E.: Chill-cast in situ composites in the pseudo-ternary Mg–(Cu, Ni)–Y glass-forming system: Microstructure and compressive properties. J. Mater. Res. 22, 314 (2007).Google Scholar
26.Hay, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band formation and enhanced plasticity of bulk metallic glasses. Phys. Rev. Lett. 84, 2901 (2000).Google Scholar
27.Park, J.M.: Mechanical behavior of bulk nano-/ultrafine structured composites. Ph.D. thesis, Yonsei University, Seoul, Korea, 2008.Google Scholar
28.JCPDFWIN: Version 2.2 (JCPDS, International Center for Diffraction Data, Newton Square, PA, 2001).Google Scholar
29.Okamoto, H.: Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).Google Scholar
30.Park, J.M., Kim, D.H., Kim, K.B., and Kim, W.T.: Deformation-induced rotational eutectic colonies containing length-scale heterogeneity in an ultrafine eutectic Fe83Ti7Zr6B4 alloy. Appl. Phys. Lett. 91, 131907 (2007).Google Scholar
31.Courtney, T.H.: Mechanical Behavior of Materials (McGraw-Hill, Boston, MA, 1998).Google Scholar
32.Han, J.H., Kim, K.B., Yi, S., Park, J.M., Kim, D.H., Pauly, S., and Eckert, J.: Influence of a bimodal eutectic structure on the plasticity of a (Ti70.5Fe29.5)91Sn9 ultrafine composite. Appl. Phys. Lett. 93, 201906 (2008).CrossRefGoogle Scholar
33.Louzguine, D.V., Louzguina, L.V., Kato, H., and Inoue, A.: Investigation of Ti–Fe–Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005).Google Scholar
34.Fu, L., Yang, J., Bi, Q., and Liu, W.: Enhanced ductility of dendrite-ultrafine eutectic composite Fe3B alloy prepared by self propagating high temperature synthesis. Adv. Eng. Mater. 11, 194 (2009).CrossRefGoogle Scholar