Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:12:32.572Z Has data issue: false hasContentIssue false

The evolution of damage in tritium exposed copper

Published online by Cambridge University Press:  31 January 2011

S.H. Goods
Affiliation:
Tritium Effects Research Division, Sandia National Laboratories, Livermore, California 94550
Get access

Abstract

Severe microstructural damage has been observed in polycrystalline OFHC copper specimens thermally exposed to high pressure tritium gas at temperatures ⋚200 °C, but not at 300 °C. No such damage occurs in single crystal specimens exposed under identical conditions, regardless of temperature. In the polycrystals, the damage takes the form of very flat, crack-like intergranular cavities. It is found that the cavitation evolves slowly with time. For short exposure times, cavities as small as 0.1 μm are observed. In specimens subjected to the longest aging times, the cavities grow and link until entire grain boundary facets fail. The driving force for the growth of these cavities is attributed to the internal gas pressure of helium-3 generated by the decay of tritium. The growth kinetics of the cavity microstructure are described by a coupled grain boundary, surface self-diffusion process. The tritium exposure profoundly affects the mechanical properties of the polycrystalline material, inducing a severe loss in ductility. In concert with the observed ductility loss is a change in fracture morphology from transgranular ductile rupture to intergranular fracture. Examination of the resulting grain boundary facets reveals a dimple structure. The spacing of these dimples can be correlated with the spacing of the exposure-induced grain boundary cavities.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 OFHC Brand/A Survey of Properties and Applications, AMAX Copper Inc., 1270 Ave. of the Americas, New York 10020 (1974).Google Scholar
2Okawa, M., Tech. Report, Sumitomo Light Metals 13 (4), 11 (1972).Google Scholar
3Goods, S. H. and Neih, T. G., Scripta Metall. 17, 23 (1983).CrossRefGoogle Scholar
4Rhines, F. N. and Anderson, W. A., Trans. AIME 143, 312 (1941).Google Scholar
5Daneliy, Y. P., Kotova, J. S., Rozenberg, V. M., and Salopov, V. I., Fiz. Met. Metalloved. 44 (2), 323 (1977).Google Scholar
6Wyman, L. L., Trans. AIME 111, 205 (1934).Google Scholar
7Fast, J. D., Interactions of Metals and Gases (Academic Press, New York, 1965), Vol. 1.Google Scholar
8Venett, R. M. and Ansell, G. S., Trans. ASM 62, 1007 (1969).Google Scholar
9Vela, P. and Russell, B., J. Nucl. Mater. 22, 1 (1967).CrossRefGoogle Scholar
10Goods, S. H., Scripta Metall. 20, 565 (1986).CrossRefGoogle Scholar
11Goods, S. H., Proc. 14th Int. Conf. on Irradiation Effects on Materials, ASTM STP 1046 (1990).Google Scholar
12Kotova, I. S., Rozenberg, V. M., Strel'tsov, F. N., and Dzeneladze, Z. I., Fiz. Met. Metalloved. 38 (4), 858 (1974).Google Scholar
13Philips, A. and Graves, D. B., Trans. AIME 143, 322 (1974).Google Scholar
14Eichenauer, W., Loser, W., and White, W., Z. Metalkunde. 56, 287 (1941).Google Scholar
15Katz, L., Guinan, M., and Borg, R. S., Phys. Rev. B 4, 330 (1971).CrossRefGoogle Scholar
16Caskey, G. R., Jr., Dexter, A. H., Holzworth, M. L., Louthan, M. R., and Derrick, R. G., Corr. 32 (9), 370 (1976).CrossRefGoogle Scholar
17Gorman, J. K. and Nardella, W. R., Vac. 12, 19 (1962).CrossRefGoogle Scholar
18Oliver, B. M., Bradley, J. G., and Farrar, H., IV, Geochim. Cosmochim. Acta 48, 1759 (1984).CrossRefGoogle Scholar
19Eichenauer, W. and Pebler, A., Z. Metalk, 48, 373 (1957).Google Scholar
20Thomas, G. J., Swansiger, W. A., and Baskes, M. I., J. Appl. Phys. 50 (11) 6942 (1979).CrossRefGoogle Scholar
21McLellan, R. B., J. Phys. Chem. Solids 34, 1137 (1973).CrossRefGoogle Scholar
22 JANAF Thermochemical Tables, Office of Standard Reference Data, National Bureau of Standards, NBS 37 (1971).Google Scholar
23Chuang, T. and Rice, J. R., Acta Metall. 21, 1625 (1973).Google Scholar
24Goods, S. H. and Nix, W. D., Acta Metall. 26, 739 (1978).CrossRefGoogle Scholar
25Neih, T. G. and Nix, W. D., Acta Metall. 27, 1097 (1979).CrossRefGoogle Scholar
26Odquist, F. K. G., Inelastic Behavior of Solids, edited by Kanninen, M. F. (McGraw-Hill, New York, 1970), p. 3.Google Scholar
27Langdon, T. G., Philos. Mag. 15, 1119 (1970).Google Scholar
28Hai, D. V. and Kagnanovskii, Y. S., Fiz. Met. Metalloved. 35, 643 (1973).Google Scholar
29Gifkins, R., Acta Metall. 4, 99 (1956).CrossRefGoogle Scholar
30Broek, D., Engr. Fracture Mech. 5, 55 (1973).CrossRefGoogle Scholar