Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T18:23:25.851Z Has data issue: false hasContentIssue false

Fabrication and characterization of highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting ceramics using high magnetic field and cold isostatic pressing

Published online by Cambridge University Press:  03 March 2011

Wai Lo
Affiliation:
IRC in Superconductivity, Madingley Road, Cambridge CB3 OHE. United Kingdom
R. Stevens
Affiliation:
School of Materials Science, University of Bath, Bath BA2 7AY, United Kingdom
R. Doyle
Affiliation:
IRC in Superconductivity. Madingley Road, Cambridge CB3 OHE. United Kingdom
A.M. Campbell
Affiliation:
IRC in Superconductivity. Madingley Road, Cambridge CB3 OHE. United Kingdom
W.Y. Liang
Affiliation:
IRC in Superconductivity. Madingley Road, Cambridge CB3 OHE. United Kingdom
Get access

Abstract

High textured (Bi,Pb)2Sr2Ca2Cu3Ox ceramics have been fabricated by aligning deflocculated flakes of (Bi,Pb)2Sr2Ca2Cu3Ox suspended in an organic medium by means of a high de magnetic field (6 T) at room temperature followed by cold isostatic pressing. The proportion of the (Bi,Pb)2Sr2Ca2Cu3Ox phase in the precursor powder was carefully controlled, and the characteristics of the powder, such as size distribution and morphology, were determined. A high degree of grain alignment was found in the specimens after the magnetic alignment, although the bulk density of the materials was low. Cold isostatic pressing substantially increased the density of the magnetically prealigned specimens which also resulted in a slight decrease in the degree of grain alignment. This minor realignment was found to be due to the various kinds of processing defects that appeared in the specimens during compaction due to the grinding and cracking of the grains and their interlocking. The microstructural and superconducting properties of the sintered ceramic have been studied using texture goniometry, high resolution scanning electron microscopy, transmission electron microscopy, ac magnetic susceptometry, and critical current measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lo, W. and Glowacki, B. A., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Schneider, T. R., Tsuei, C. C., and Shiohar, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 729.Google Scholar
2Lo, W. and Glowacki, B. A., in Advances in Cryogenic Engineering (Materials), edited by Grichett, F. R. and Reed, R.P. (Plenum Press, New York, 1992), Vol. 38, p. 1065.Google Scholar
3Haldar, P., Hoehn, J. G. Jr., Rice, J. A., and Motowidlo, L. R., Appl. Phys. Lett. 60, 495 (1992).CrossRefGoogle Scholar
4Lo, W., Zhang, D. N., Glowacki, B. A., and Campbell, A. M., J. Mater. Sci. 29, 3897 (1994).CrossRefGoogle Scholar
5Ikeda, H., Yoshizaki, R., Yoshikawa, K., and Tomita, N., Jpn. J. Appl. Phys. 29, L430 (1990).CrossRefGoogle Scholar
6Murayama, N., Sudo, E., Awano, M., Kani, K., and Torri, Y., Jpn. J. Appl. Phys. 27, L1856 (1988).CrossRefGoogle Scholar
7Uzumaki, T., Yamanaka, K., Kamehara, N., and Niwa, K., Appl. Phys. Lett. 54, 2253 (1989).CrossRefGoogle Scholar
8Ansano, T., Tanaka, Y., Fukutomi, M., Jikihara, K., and Maeda, H., Jpn. J. Appl. Phys. 28, L595 (1989).CrossRefGoogle Scholar
9Yang, X. and Chaki, T. K., Supercond. Sci. Technol. 6, 269 (1993).CrossRefGoogle Scholar
10Yang, X. and Chaki, T. K., Supercond Sci. Technol. 6, 343 (1993).CrossRefGoogle Scholar
11Perin, A., Grasso, G., Daumling, M., Hensel, B., Walker, E., and Flukiger, R., Physica C 216, 339 (1993).CrossRefGoogle Scholar
12Asaro, R. J., Ahzi, S., Blumenthal, W. and DiGiovanni, A., Philos. Mag. 66, 517 (1992).CrossRefGoogle Scholar
13Ueyama, M., Hitaka, T., Kato, T., and Sato, K., Jpn. J. Appl. Phys. 30, L1384 (1991).CrossRefGoogle Scholar
14Ikeno, Y., Doi, K., Kamisada, Y., Hagashi, K., and Ogawa, T., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D.T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 843.Google Scholar
15Shi, D., Salem-Sugui, S. Jr., Wang, Z., Goodrich, L. F., Dou, S. X., Liu, H. K., Guo, Y. C., and Sorrell, C. C., Appl. Phys. Lett. 59, 3171 (1991).CrossRefGoogle Scholar
16Hikata, T., Sato, K., and Helosuyanagi, H., Jpn. J. Appl. Phys. 28, L82 (1989).CrossRefGoogle Scholar
17Hikata, T., Ueyama, M., Mukai, H., and Sato, K., Cryogenics 30, 924 (1990).CrossRefGoogle Scholar
18Yoo, J.M. and Mukherjee, K., Physica C 222, 241 (1994).CrossRefGoogle Scholar
19Grasso, G., Perin, A., Hensel, B., and Flukiger, R., Physica C 217, 335 (1993).CrossRefGoogle Scholar
20Li, Q., Brodersen, K., Hjuler, H. A., and Freltoft, T., Physica C 217, 360 (1993).CrossRefGoogle Scholar
21Steinlage, G., Roeder, R., Trumble, K., Bowman, K., Li, S., and McElfresh, M., J. Mater. Res. 9, 833 (1994).CrossRefGoogle Scholar
22Ekin, J. E., Hart, H. R. Jr., and Gaddipati, A. R., J. Appl. Phys. 68, 2285 (1990).CrossRefGoogle Scholar
23Arendt, R. H., Garbanskas, M. F., Lay, K. W., and Tkaczyk, J. E., Physica C 176, 131 (1991).CrossRefGoogle Scholar
24Kugimiya, K., Kawashima, S., Inoue, D., and Adachi, S., Mater. Lett. 6, 131 (1991).Google Scholar
25Ferreria, J. M., Maple, M. B., Zhou, H., Hake, R. R., Lee, B. W., Seeman, C. L., Kuric, M. V., and Guertin, R. P., Appl. Phys. A 47, 105 (1988).CrossRefGoogle Scholar
26Statt, B. W., Wang, Z., Bagheri, S., and Rutter, J., Physica C 183, 57 (1991).CrossRefGoogle Scholar
27Peterson, S. C. and Cima, M. J., J. Am. Ceram. Soc. 71, 458 (1988).CrossRefGoogle Scholar
28Ishida, T., Sakuma, T., Sasah, T., and Kawada, Y., Jpn. J. Appl. Phys. 28, L559 (1989).CrossRefGoogle Scholar
29Glowacki, B. A., Lo, W., Yuan, J., Jackiewicz, J., and Liang, W. Y., IEEE Trans. Appl. Supercond. 3, 953 (1993).CrossRefGoogle Scholar