Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T22:04:41.074Z Has data issue: false hasContentIssue false

Fabrication and characterization of large Nd–Ba–Cu–O grains prepared under low oxygen pressure

Published online by Cambridge University Press:  31 January 2011

W. Lo
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
N. Hari Babu
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Y. Shi
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
D. M. Astill
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Get access

Extract

A large, single-grain Nd–Ba–Cu–O (NdBCO) composite consisting of superconducting NdBa2Cu3O7-δ containing nonsuperconducting Nd4Ba2Cu2O10 phase inclusions was fabricated up to 2 cm in diameter using a top-seeded melt-textured growth technique. A MgO single-crystal seed was used to provide a heterogeneous nucleation site at the center of a presintered pellet heated above its peritectic temperature and cooled continuously in a conventional tube furnace in reduced oxygen partial pressure. This process produces individual grains with the c axis oriented at ≈10° to the seed surface which, from vibrating-sample magnetization measurements, exhibit a pronounced peak effect in their magnetic moment over a wide temperature range (50–90 K) when the supercurrent flows in the a-b planes. A very high irreversibility field (>9 T at 77 K) is also observed in these grains for field applied both perpendicular and parallel to the crystallographic c axis which is significantly greater than that observed in good-quality melt-processed Y–Ba–Cu–O. These results underline the potential of NdBCO for high-field engineering applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chu, W.K., Ma, M.A., McMichael, C.K., and Lamb, M.A., Appl. Supercond. 1, 1259 (1993).CrossRefGoogle Scholar
2.Murakami, M., Appl. Supercond. 1, 1157 (1993).CrossRefGoogle Scholar
3.Bornemann, H.J. and Sander, M., IEEE Trans. Appl. Supercond. 7, 398 (1997).CrossRefGoogle Scholar
4.Fukuyama, H., Seki, K., Takizawa, T., Endou, S., Murakami, M., Takaichi, H., and Koshizuka, N., in Advances in Superconductivity V, Proc. 5th Int. Symp. Supercond., edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, Japan, 1993), p. 1313.CrossRefGoogle Scholar
5.Takahata, R., Ueyama, H., and Kubo, A., in Advances in Superconductivity V, Proc. 5th Int. Symp. Supercond, edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, Japan, 1993), p. 1309.CrossRefGoogle Scholar
6.Decher, R., Peters, P.N., Sisk, R.C., Urban, E.W., Vlasse, M., and Rao, D.K., Appl. Supercond. 1, 1265 (1993).CrossRefGoogle Scholar
7.Chu, W.K., Ma, K.B., McMichael, C.K., and Lamb, M.A., Appl. Supercond. 1, 1259 (1993).CrossRefGoogle Scholar
8.Coombs, T.A. and Campbell, A.M., in Appl. Supercond, Proc. 2nd European Conf. on Appl. Supercond., Inst. Phys. Conf. Ser. 148, edited by Dew-Hughes, D. (Institute of Physics, Bristol, United Kingdom, 1995), p. 671.Google Scholar
9.McMichael, C.K., Ma, K.B., Lamb, M.A., Lin, M.W., Chow, L., Meng, R.L., Hor, P.H., and Chu, W.K., Appl. Phys. Lett. 60, 1893 (1992).CrossRefGoogle Scholar
10.Itoh, Y., Yanagi, Y., Yoshikawa, M., Oka, T., Harada, S., Sakakibara, T., Yamada, Y., and Mizutani, U., Jpn. J. Appl. Phys. 34, 5574 (1995).CrossRefGoogle Scholar
11.Fuchs, G., Krabbes, G., Schatxle, P., Stoye, P., Staiger, T., and Muller, K.H., Physica C 268, 115 (1996).CrossRefGoogle Scholar
12.Bean, C.P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
13.Lo, W., Cardwell, D.A., Dewhurst, C.D., and Dung, S-L., J. Mater. Res. 11, 786 (1996).CrossRefGoogle Scholar
14.Cardwell, D.A., J. Mater. Sci. Eng. B B53, 1 (1998).CrossRefGoogle Scholar
15.Dewhurst, C.D., Lo, W., Shi, Y.H., and Cardwell, D.A., J. Mater. Sci. Eng. B B53, 169 (1998).Google Scholar
16.Murakami, M., Yoo, S-I., Higuchi, T., Sakai, N., Watabiki, M., Koshizuka, N., and Tanaka, S., Physica C 235–240, 2781 (1994).CrossRefGoogle Scholar
17.Yoo, S.I. and McCallum, R.W., Physica C 210, 147 (1993).CrossRefGoogle Scholar
18.Yoo, S.I., Kramer, M.J., Dennis, K.W., and MaCallum, R.W., in High-Temperature Superconductors, Materials Aspects, edited by Freyhardt, H.C., Flukiger, R., and Peuckert, M. (Informationsgesellschaft, Oberursel, Germany, 1991), p. 593.Google Scholar
19.Yoo, S.I., Sakai, N., Takaichi, H., Higuchi, T., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
20.Murakami, M., Yoo, S.I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715 (1994).CrossRefGoogle Scholar
21.Krauns, C., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).CrossRefGoogle Scholar
22.Ikeda, S., Yoshikawa, M., Yanagi, Y., Itoh, Y., Oka, T., Ikuta, H., and Mizutani, U., in Advances in Superconductivity (Proc. ISS 1997 10, Gifu, Japan, 1998), p. 705.Google Scholar
23.Tsujino, J., Tatsumi, N., and Shiohara, Y., J. Mater Res. 10, 261 (1995).CrossRefGoogle Scholar
24.Takagi, A., Yamazaki, T., Oka, T., Yanagi, Y., Itoh, Y., Yoshikawa, M., Yamada, Y., and Mizutani, U., Physica C 250, 222 (1995).CrossRefGoogle Scholar
25.Ikeda, S., Oka, T., Yamada, Y., Yoshikawa, M., Yanagi, Y., Itoh, Y., and Mizutani, U., Jpn. J. Appl. Phys. 36, L345 (1997).CrossRefGoogle Scholar
26.Lo, W., Cardwell, D.A., and Shi, Y.H., J. Mat. Sci. Eng. B B65, 1 (1999).Google Scholar
27.Lo, W., Cardwell, D.A., Dung, S-L., and Barter, R.G., J. Mater. Sci. 30, 3995 (1995).CrossRefGoogle Scholar
28.Cardwell, D.A., Lo, W., Thorpe, H.D.E, and Roberts, A., J. Mater. Sci. Lett. 14, 1444 (1995).CrossRefGoogle Scholar
29.Yan, Y., Cardwell, D.A., Campbell, A.M., and Stobbs, W.M., J. Mater. Res. 11, 2990 (1996).CrossRefGoogle Scholar
30.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
31.Chow, J.C.L, Leung, H-T., Lo, W., and Cardwell, D.A., Supercond. Sci. Technol. 11, 369 (1998).CrossRefGoogle Scholar
32.Chow, J.C.L, Leung, H-T., Lo, W., and Cardwell, D.A., J. Mater. Sci. 33, 1083 (1998).CrossRefGoogle Scholar
33.Tachiki, M. and Takahashi, S., Solid State Commun. 70, 291 (1989).CrossRefGoogle Scholar
34.Egi, T., Wen, J.G., Kuroda, K., Unoki, H., and Koshizuka, N., Appl. Phys. Lett. 67, 2406 (1995).CrossRefGoogle Scholar
35.Wolf, Th., Bornarel, A-C., Kupfer, H., Meier-Hirmer, R., and B. Obst. Phys. Rev. B 56, 6308 (1997).CrossRefGoogle Scholar