Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T07:05:38.990Z Has data issue: false hasContentIssue false

Fabrication, mechanical property and in vitro bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys

Published online by Cambridge University Press:  18 June 2020

Farhad Saba
Affiliation:
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing211189, China State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
Elham Garmroudi-Nezhad
Affiliation:
Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
Faming Zhang*
Affiliation:
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing211189, China
Lili Wang
Affiliation:
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing211189, China
*
a)Address all correspondence to this author. e-mail: fmzhang@seu.edu.cn
Get access

Abstract

Novel three-dimensional (3D) hierarchical macro- to nano-porous titanium (Ti) and TiMo alloys with sufficient compressive strength (CS) were prepared using NaCl spacer and dealloying methods. The dealloying process was implemented by the heat treatment of TiCu and TiMoCu master alloys in Mg powders. The 3D-hierarchical porous structures were composed of large pores having a mean size of 400 μm with interconnected micro-pores in the size of 10–30 μm, where the pore walls possessed numerous nano-pores with a size range of 10–50 nm. The CS and elastic modulus values were 72.4 MPa and 2.67 GPa as well as 92.62 MPa and 3.36 GPa for Ti and TiMo, respectively. The hierarchical porous structure is beneficial for the fast nucleation of bone-like apatite after immersion in simulated body fluid (SBF). In addition, TiMo samples after NaOH and heat treatments provide better apatite formation after soaking in SBF for a week, in comparison with the samples without treatment.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakajima, H.: Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091 (2007).CrossRefGoogle Scholar
Wally, Z.J., van Grunsven, W., Claeyssens, F., Goodall, R., and Reilly, G.C.: Porous titanium for dental implant applications. Metals 5, 1902 (2015).CrossRefGoogle Scholar
Gao, N.F. and Miyamoto, Y.: Joining of Ti3SiC2 with Ti-6Al-4V alloy. J. Mater. Res. 17, 52 (2002).CrossRefGoogle Scholar
Takemoto, M., Fujibayashi, S., Neo, M., Suzuki, J., Kokubo, T., and Nakamura, T.: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26, 6014 (2005).CrossRefGoogle ScholarPubMed
Borowski, M., Traverse, A., and Dallas, J.P.: Structural characterization of Ti implanted AIN. J. Mater. Res. 10, 3136 (1995).CrossRefGoogle Scholar
Wang, K.: The use of titanium for medical applications in the USA. Mater. Sci. Eng. A 213, 134 (1996).CrossRefGoogle Scholar
Tanner, K.E.: Titanium in medicine. J. Eng. Med. 216, 215 (2002).CrossRefGoogle Scholar
Van Noort, R.: Titanium: The implant material of today. J. Mater. Sci. 22, 3801 (1987).CrossRefGoogle Scholar
De Vasconcellos, L.M.R., De Oliveira Leite, D., Nascimento, F.O., De Vasconcellos, L.G.O., De Alencastro Graça, M.L., Carvalho, Y.R., and Cairo, C.A.A.: Porous titanium for biomedical applications: An experimental study on rabbits. Med. Oral Pathol. Oral Cir. Bucal. 15, 407 (2010).CrossRefGoogle ScholarPubMed
Yamamoto, A., Honma, R., and Sumita, M.: Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 39, 331 (1998).3.0.CO;2-E>CrossRefGoogle ScholarPubMed
He, Y., Zhang, Y., Jiang, Y., and Zhou, R.: Fabrication and characterization of superelastic Ti-Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications. J. Mater. Res. 32, 2510 (2017).CrossRefGoogle Scholar
Luong-Van, E., Rodriguez, I., Low, H.Y., Elmouelhi, N., Lowenhaupt, B., Natarajan, S., Lim, C.T., Prajapati, R., Vyakarnam, M., and Cooper, K.: Review: Micro- and nanostructured surface engineering for biomedical applications. J. Mater. Res. 28, 165 (2013).CrossRefGoogle Scholar
Radzi, S., Cowin, G., Robinson, M., Pratap, J., Volp, A., Schuetz, M.A., and Schmutz, B.: Metal artifacts from titanium and steel screws in CT, 1.5 T and 3 T MR images of the tibial Pilon: A quantitative assessment in 3D. Quant. Imaging Med. Surg. 4, 163 (2014).Google Scholar
Sul, Y.T., Johansson, C.B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A., and Albrektsson, T.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23, 491 (2002).CrossRefGoogle ScholarPubMed
Chen, Y., Feng, B., Zhu, Y., Weng, J., Wang, J., and Lu, X.: Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures. J. Mater. Sci. Mater. Med. 22, 839 (2011).CrossRefGoogle ScholarPubMed
Arabnejad, S., Johnston, B., Tanzer, M., and Pasini, D.: Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 35, 1774 (2017).CrossRefGoogle ScholarPubMed
Ayers, R.A., Simske, S.J., Bateman, T.A., Petkus, A., Sachdeva, R.L.C., and Gyunter, V.E.: Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. J. Biomed. Mater. Res. 45, 42 (1999).3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Kujala, S., Ryhänen, J., Danilov, A., and Tuukkanen, J.: Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 24, 4691 (2003).CrossRefGoogle ScholarPubMed
Götz, H.E., Müller, M., Emmel, A., Holzwarth, U., Erben, R.G., and Stangl, R.: Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25, 4057 (2004).CrossRefGoogle ScholarPubMed
Chen-Wiegart, Y.C.K., Wada, T., Butakov, N., Xiao, X., De Carlo, F., Kato, H., Wang, J., Dunand, D.C., and Maire, E.: 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography. J. Mater. Res. 28, 2444 (2013).CrossRefGoogle Scholar
Schwarz, K. and Epple, M.: Hierarchically structured polyglycolide – a biomaterial mimicking natural bone. Macromol. Rapid Commun. 19, 613 (1998).Google Scholar
Thelen, S., Barthelat, F., and Brinson, L.C.: Mechanics considerations for microporous titanium as an orthopedic implant material. J. Biomed. Mater. Res. A 69, 601 (2004).CrossRefGoogle ScholarPubMed
Song, T., Yan, M., and Qian, M.: The enabling role of dealloying in the creation of specific hierarchical porous metal structures—A review. Corros. Sci. 134, 78 (2018).CrossRefGoogle Scholar
Sun, M.H., Huang, S.Z., Chen, L.H., Li, Y., Yang, X.Y., Yuan, Z.Y., and Su, B.L.: Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479 (2016).CrossRefGoogle ScholarPubMed
Wada, T., Yubuta, K., Inoue, A., and Kato, H.: Dealloying by metallic melt. Mater. Lett. 65, 1076 (2011).CrossRefGoogle Scholar
Xu, C., Su, J., Xu, X., Liu, P., Zhao, H., Tian, F., and Ding, Y.: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007).CrossRefGoogle ScholarPubMed
Liu, J., Jiang, G., Liu, Y., Di, J., Wang, Y., Zhao, Z., Sun, Q., Xu, C., Gao, J., Duan, A., Liu, J., Wei, Y., Zhao, Y., and Jiang, L.: Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci. Rep. 4, 1 (2014).Google ScholarPubMed
Yang, X.Y., Li, Y., Lemaire, A., Yu, J.G., and Su, B.L.: Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure Appl. Chem. 81, 2265 (2009).CrossRefGoogle Scholar
Zhang, F., Wang, L., Li, P., Liu, S., Zhao, P., Dai, G., and He, S.: Preparation of nano to submicro-porous TiMo foams by spark plasma sintering. Adv. Eng. Mater. 19, 1 (2017).CrossRefGoogle Scholar
Zhang, F., Li, P., Yu, J., Wang, L., Saba, F., Dai, G., and He, S.: Fabrication, formation mechanism and properties of three-dimensional nanoporous titanium dealloyed in metallic powders. J. Mater. Res. 32, 1528 (2017).CrossRefGoogle Scholar
Zhang, F., Otterstein, E., and Burkel, E.: Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams. Adv. Eng. Mater. 12, 863 (2010).CrossRefGoogle Scholar
Takeuchi, A., and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Li, B. and Lu, X.: Influence of Ti powder characteristics on the mechanical properties of porous Ti using space holder technique. Acta Metall. Sin. 27, 338 (2014).CrossRefGoogle Scholar
Hashimoto, M., Kitaoka, S., Muto, S., Tatsumi, K., and Obata, Y.: The microstructure of scale formed by oxynitriding of Ti and exhibiting significant apatite-forming ability. J. Mater. Res. 31, 1004 (2016).CrossRefGoogle Scholar
Fan, X., Chen, J., Zou, J.P., Wan, Q., Zhou, Z.C., and Ruan, J.M.: Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid. Trans. Nonferrous Met. Soc. China 19, 347 (2009).CrossRefGoogle Scholar
Liu, J., Ruan, J., Chang, L., Yang, H., and Ruan, W.: Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility. Mater. Sci. Eng. C 78, 503 (2017).CrossRefGoogle ScholarPubMed
Wang, X.J., Li, Y.C., Lin, J.G., Hodgson, P.D., and Wen, C.E.: Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy. J. Mater. Res. 23, 1682 (2008).CrossRefGoogle Scholar
Rohanizadeh, R., Al-Sadeq, M., and LeGeros, R.Z.: Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition. J. Biomed. Mater. Res. A 71, 343 (2004).CrossRefGoogle ScholarPubMed
Faúndez, G., Troncoso, M., Navarrete, P., and Figueroa, G.: Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 4, 1 (2004).CrossRefGoogle ScholarPubMed
Villapún, V.M., Dover, L.G., Cross, A., and González, S.: Antibacterial metallic touch surfaces. Materials 9, 1 (2016).CrossRefGoogle ScholarPubMed
Slavin, Y.N., Asnis, J., Häfeli, U.O., and Bach, H.: Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 1 (2017).CrossRefGoogle ScholarPubMed
Rivera-Chacon, D.M., Alvarado-Velez, M., Acevedo-Morantes, C.Y., Singh, S.P., Gultepe, E., Nagesha, D., Sridhar, S., and Ramirez-Vick, J.E.: Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J. Biomed. Nanotechnol. 9, 1092 (2013).CrossRefGoogle ScholarPubMed
Quan, Y., Zhang, F., Rebl, H., Nebe, B., Keßler, O., and Burkel, E.: Ti6Al4 V foams fabricated by spark plasma sintering with post-heat treatment. Mater. Sci. Eng. A 565, 118 (2013).CrossRefGoogle Scholar