Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T07:06:51.616Z Has data issue: false hasContentIssue false

Facile composite synthesis and photoluminescence of NaGd(MoO4)2: Ln3+ (Ln = Eu, Tb) submicrometer phosphors

Published online by Cambridge University Press:  31 January 2011

Bing Yan*
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
Jianhua Wu
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
*
a)Address all correspondence to this author. e-mail: byan@tongji.edu.cn
Get access

Abstract

NaGd(MoO4)2:Ln3+ (Ln = Eu, Tb) submicrometer phosphors have been synthesized by a composite method including the solid state reaction process at room temperature and the hydrothermal process. It is revealed that temperature and humidity have an influence on the reaction rate and that higher temperature and humidity can speed up the reaction process. Crystalline water is necessary for the solid phase reaction at room temperature. The x-ray diffraction (XRD) patterns indicate that NaGd(MoO4)2:Ln3+ (Ln = Eu, Tb) submicrometer phosphors crystallize well with the scheelite structure. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrate that the average grain size of NaGd(MoO4)2:Ln3+ is about 225 nm without conglomeration. The luminescent lifetime and quantum efficiency for NaGd(MoO4)2:Eu3+ are determined.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Holcomb, M.O., Mueller-Mach, R., Mueller, G.O., Collins, D., Fletcher, R.M., Steigerwald, D.A.: Lasers and electro-opticsCLEO '03 2003 4Google Scholar
2.Mueller-Mach, R., Mueller, G.O., Krames, M.K., Trottier, T.: High-power phosphor-converted light-emitting diodes based on III-nitrides. IEEE J. Sel. Top. Quantum Electron. 8, 339 2002CrossRefGoogle Scholar
3.Nakamura, S.: Blue-green light-emitting diodes and violet laser diodes. MRS Bull. 22, 29 1997CrossRefGoogle Scholar
4.Grillot, P.N., Krames, M.R., Zhao, H., Teoh, S.H.: Sixty thousand hour light output reliability of AlGaInP light emitting diodes. IEEE Trans. Device Mater. Reliab. 6, 564 2006CrossRefGoogle Scholar
5.Neeraj, S., Kijima, N., Cheetham, A.K.: Novel red phosphors for solid-state lighting: The system NaM(WO4)2−x(MoO4)x:Eu3+ (M = Gd, Y, Bi). Chem. Phys. Lett. 387, 2 2004CrossRefGoogle Scholar
6.Lo, C.L., Duh, J.G., Chiou, B.S., Peng, C.C.: Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method. Mater. Chem. Phys. 71, 179 2001CrossRefGoogle Scholar
7.Macalik, L., Hanuza, J., Sokolnicki, J.: Optical properties of Pr3+ in lanthanum double molybdates and tungstates: KLa1−xPrx(MO4)2 (M = Mo, W; x≤1). Spectrochim. Acta, Part A 55, 251 1999CrossRefGoogle Scholar
8.Cascales, C., Méndez Blas, A., Rico, M., Volkov, V., Zaldo, C.: The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: Relationship with the structural local disorder. Opt. Mater. 27, 1672 2005CrossRefGoogle Scholar
9.Li, X.Z., Lin, Z.B., Zhang, L.Z., Wang, G.F.: Growth, thermal and spectral properties of Nd3+-doped NaGd(MoO4)2 crystal. J. Cryst. Growth 290, 670 2006CrossRefGoogle Scholar
10.Li, X.Z., Wang, G.F.: Spectral parameters of Nd3+ ion in Nd3+: NaGd(MoO4)(2) crystal. Chin. J. Struct. Chem. 25, 392 2006Google Scholar
11.Vladimir, A.M., Alla, V.A., Gervais, C., Nicolas, G.: KNd(MoO4)2: A new incommensurate modulated structure in the scheelite family. Chem. Mater. 18, 4075 2006Google Scholar
12.Basovich, O.M., Khaikina, E.G., Solodovnikov, S.F.: Phase formation in the systems Li2MoO4–K2MoO4–Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) and properties of triple molybdates LiKLn2(MoO4)4. Solid State Chem. 178, 1580 2005CrossRefGoogle Scholar
13.Wang, Z.L., Liang, H.B., Gong, M.L., Su, Q.: Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2. Opt. Mater. 29, 896 2006CrossRefGoogle Scholar
14.Yang, Y., Jia, D.Z., Ge, W.W., Jin, C.F., Xin, X.Q.: Synthesis of inorganic nano-materials by solid state reaction at low-heating temperatures. Chin. J. Inorg. Chem. 20, 881 2004Google Scholar
15.Xin, X.Q., Zheng, L.M.: Solid state reactions of coordination compounds at low heating temperatures. J. Solid State Chem. 106, 451 1993CrossRefGoogle Scholar
16.Wang, R.Y., Jia, D.Z., Zhang, L., Liu, L.: Rapid synthesis of amino acid polyoxometalate nanotubes by one-step solid-state chemical reaction at room temperature. Adv. Funct. Mater. 16, 687 2006CrossRefGoogle Scholar
17.Lang, J.P., Xin, X.Q.: Solid state synthesis of Mo(W)-S cluster compounds at low heating temperatures. J. Solid State Chem. 108, 118 1994Google Scholar
18.Tsuzuki, T., Ding, J., McCormick, P.G.: Mechanochemical synthesis of ultrafine zinc sulfide particles. Phys. Biol. 239, 378 1997CrossRefGoogle Scholar
19.Li, Q.W., Luo, G.A., Li, J., Xia, X.: Preparation of ultrafine MnO2 powders by the solid state method reaction of KMnO4 with Mn(II) salts at room temperature. J. Mater. Process. Technol. 137, 25 2003CrossRefGoogle Scholar
20.Li, F., Yu, X.H., Pan, H.J., Wang, M.L., Xin, X.Q.: Syntheses of MO2 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature. Solid State Sci. 2, 767 2000CrossRefGoogle Scholar
21.Wang, Z.L., Liang, H.B., Gong, M.L., Su, Q.: Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2. Opt. Mater. 29, 896 2007CrossRefGoogle Scholar
22.Wang, Z.L., Liang, H.B., Gong, M.L., Su, Q.: Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure. J. Alloys Compd. 432, 308 2007CrossRefGoogle Scholar
23.Wang, J.G., Jing, X.P., Yan, C.H., Lin, J.H., Liao, F.H.: Influence of fluoride on ff transitions of Eu3+ in LiEuM2O8 (M = Mo, W). J. Lumin. 121, 57 2006CrossRefGoogle Scholar
24.Almeida, R.M.: Handbook of Sol Gel Science and Technology, Processing, Characterization and Applications, Volume II: Characterization of Sol-Gel Materials and Products edited by Sumio Sakka Kluwer Academic Publishers Boston 2005 359Google Scholar
25.Malta, O.L., Brito, H.F., Menezes, J.F.S., Silva, F.R.G.E., Alves, S., Farias, F.S., Andrade, A.V.M.: Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate), 2(dibenzyl sulfoxide): A theoretical analysis based on structural data obtained from a sparkle model. J. Lumin. 75, 255 1997CrossRefGoogle Scholar
26.Werts, M.H.V., Jukes, R.T.F., Verhoeven, J.W.: The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 4, 1542 2002CrossRefGoogle Scholar
27.Peng, C.Y., Zhang, H.J., Yu, J.B., Meng, Q.G., Fu, L.S., Li, H.R., Sun, L.N., Guo, X.M.: Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. J. Phys. Chem. B 109, 15278 2005CrossRefGoogle ScholarPubMed
28.Carlos, L.D., Messaddeq, Y., Brito, H.F., Ferreira, R.A.S., Bermudez, V.D., Ribeiro, S.J.L.: Full-color phosphors from europium(III)-based organosilicates. Adv. Mater. 12, 594 20003.0.CO;2-S>CrossRefGoogle Scholar
29.Soares-Santos, P.C.R., Nogueira, H.I.S., Felix, V., Drew, M.G.B., Ferreira, R.A.S., Carlos, L.D., Trindade, T.: Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chem. Mater. 15, 100 2003CrossRefGoogle Scholar
30.Teotonio, E.E.S., Espinola, J.G.P., Brito, H.F., Malta, O.L., Oliveria, S.F., de Foria, D.L.A., Izumi, C.M.S.: Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes. Polyhedron 21, 1837 2002CrossRefGoogle Scholar
31.Ribeiro, S.J.L., Dahmouche, K., Ribeiro, C.A., Santilli, C.V., Pulcinelli, S.H.J.: Study of hybrid silica-polyethyleneglycol xerogels by Eu3+ luminescence spectroscopy. J. Sol-Gel Sci. Technol. 13, 427 1998CrossRefGoogle Scholar
32.Malta, O.L., Couto dos Santos, M.A., Thompson, L.C., Ito, N.K.: Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate)3 1, l0-phenanthroline complex. J. Lumin. 69, 77 1996CrossRefGoogle Scholar