Published online by Cambridge University Press: 16 December 2011
The Fe64B22.8Nd6.6Y3.9Nb2.7 nanocomposite permanent magnets in the form of rods of 2 mm in diameter and 25 mm in length have been prepared by annealing the amorphous precursors. The phase evolution, microstructure, and magnetic properties of Fe64B22.8Nd6.6Y3.9Nb2.7 nanocomposite permanent magnets have been investigated by x-ray diffractometry, transmission electron microscopy, and magnetometry techniques. The exchange coupling between the magnetically soft and hard magnetic phase is evidenced by the δM curves. The hard magnetic properties of the nanocomposites were found to be sensitive to the annealing process. The microstructure of the annealed nanocomposite consists of magnetically soft α-Fe (15–25 nm) and Fe3B (25–35 nm) grains and hard magnetic Nd2Fe14B (45–55 nm) grains. The optimum hard magnetic properties, such as jHc = 961.6 kA/m (12.0 kOe), Br = 0.65 T (6.5 kG), and BHmax = 65.17 kJ/m3 (8.19 MGOe), were obtained by annealing the alloy at 700 °C for 15 min and are related to the more refined nanostructure leading to strong exchange coupling between the soft and hard magnetic grains. Annealing above 700 °C induces a decoupling effect due to the coarsening of soft and hard magnetic phases.