Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T20:44:23.207Z Has data issue: false hasContentIssue false

Finite temperature structure and thermodynamics of the Au Σ5 (001) twist boundary

Published online by Cambridge University Press:  31 January 2011

R. Najafabadi
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
D. J. Srolovitz
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
R. LeSar
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The structure and thermodynamic properties of a Σ5 (001) twist boundary in gold are studied as a function of temperature. This study was performed within the framework of the Local Harmonic (LH) model and employed an Embedded Atom Method (EAM) potential for gold. We find that for the Σ5 (001) twist boundary in gold, a distorted CSL structure is stable at low temperatures, but undergoes a phase transformation to a DSC related structure near room temperature. This transformation is shown to be first order. The temperature dependences of the excess grain boundary free energy, enthalpy, entropy, specific heat, and excess volume are calculated. Discontinuities are observed in the slope of the grain boundary excess free energy (versus temperature), in the value of the grain boundary excess specific heat and excess volume. The stable high temperature grain boundary structure has a smaller excess volume than does the lower temperature structure, and both structures have a coefficient of thermal expansion which is in excess of that for the perfect crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Budai, J., Bristowe, P.D., and Sass, S.L., Acta Metall. 31, 699 (1983).CrossRefGoogle Scholar
2Fitzsimmons, M. R. and Sass, S. L., Acta Metall. 36, 3103 (1988).CrossRefGoogle Scholar
3Majid, I., Bristowe, P. D., and Balluffi, R.W., Phys. Rev. B 40, 2779 (1989).CrossRefGoogle Scholar
4Fitzsimmons, M. R. and Sass, S. L., Acta Metali. 36, 1009 (1988).Google Scholar
5Bristowe, P. D. and Sass, S. L., Acta Metali. 28, 575 (1980).CrossRefGoogle Scholar
6Najafabadi, R., Srolovitz, D. J., and LeSar, R. A., Scripta Metall. 24, 251 (1990).CrossRefGoogle Scholar
7Fitzsimmons, M. R., Vaudin, M. D., and Sass, S. L., Scripta Metall. 22, 105 (1988).CrossRefGoogle Scholar
8Balluffi, R.W. and Hsieh, T. E., J. Phys. (Paris) 49, C5337 (1988).CrossRefGoogle Scholar
9Guillope, M., J. Phys. (Paris) 47, 1347 (1986).CrossRefGoogle Scholar
10Vitek, V., Minonishi, Y., and Wang, G. J., J. Phys. (Paris) 46, C4243 (1985).CrossRefGoogle Scholar
11Carrion, F., Kalonji, G., and Yip, S., Scripta Metall. 17, 915 (1983).CrossRefGoogle Scholar
12Deymier, P., Taiwo, A., and Kalonji, G., Acta Metali. 35, 2719 (1987).CrossRefGoogle Scholar
13Deymier, P. and Kalonji, G., J. Phys. (Paris) 46, C4213 (1985).CrossRefGoogle Scholar
14Sutton, A. P., Philos. Mag. A 60, 147 (1989).CrossRefGoogle Scholar
15Chen, L. Q. and Kalonji, G., Philos. Mag. A 60, 525 (1989).CrossRefGoogle Scholar
16Lutsko, J. F., Wolf, D., and Yip, S., J. Phys. (Paris) 49, C5375 (1988).CrossRefGoogle Scholar
17Rottman, C., J. Phys. (Paris) 49, C5313 (1988).CrossRefGoogle Scholar
18LeSar, R., Najafabadi, R., and Srolovitz, D. J., Phys. Rev. Lett. 63, 624 (1989).CrossRefGoogle Scholar
19Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
20Foiles, S. M. and Adams, G. B., Phys. Rev. B 40, 5909 (1989).CrossRefGoogle Scholar
21Hultgren, R., Desai, P. D., Hawkins, D.T., Gleiser, M., Kelley, K. K., and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).Google Scholar
22Fitzsimmons, M. R., Burkel, E., and Sass, S. L., Phys. Rev. Lett. 61, 2237 (1988).CrossRefGoogle Scholar
23Bristowe, P. D. and Crocker, A. G., Philos. Mag. A 38, 487 (1978).CrossRefGoogle Scholar
24Bollman, W., Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).CrossRefGoogle Scholar
25Oh, Y. and Vitek, V., Acta Metall. 34, 1941 (1986).CrossRefGoogle Scholar
26Chen, S. P., Voter, A. F., and Srolovitz, D. J., J. Mater. Res. 4, 64 (1989).Google Scholar
27Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. Phys. (Paris) 49, C5769 (1988).CrossRefGoogle Scholar
28Wolf, D. and Lutsko, J.F., J. Mater. Res. 4, 1427 (1989).CrossRefGoogle Scholar
29Kuhn, H., Baero, G., and Gleiter, H., Acta Metall. 27, 959 (1979).CrossRefGoogle Scholar