Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T21:17:29.240Z Has data issue: false hasContentIssue false

Flexible stainless steel foil as a substrate for superconducting Y-Ba-Cu-O films

Published online by Cambridge University Press:  31 January 2011

S. Witanachchi
Affiliation:
New York State Institute on Superconductivity, State University of New York at Buffalo, 330 Bonner Hall, Buffalo, New York 14260
S. Patel
Affiliation:
New York State Institute on Superconductivity, State University of New York at Buffalo, 330 Bonner Hall, Buffalo, New York 14260
Y. Z. Zhu
Affiliation:
New York State Institute on Superconductivity, State University of New York at Buffalo, 330 Bonner Hall, Buffalo, New York 14260
H. S. Kwok
Affiliation:
New York State Institute on Superconductivity, State University of New York at Buffalo, 330 Bonner Hall, Buffalo, New York 14260
D. T. Shaw
Affiliation:
New York State Institute on Superconductivity, State University of New York at Buffalo, 330 Bonner Hall, Buffalo, New York 14260
Get access

Abstract

As-deposited superconducting Y-Ba-Cu-O films have been grown on stainless steel substrates by the plasma assisted laser deposition technique. Low interfacial diffusion of iron at the 550°C growth temperature enables us to produce superconducting films with critical temperatures up to 83 K and critical currents up to ∼4 × 103 A/cm2 (40 K). Dependence of the superconducting properties of the Y-Ba-Cu-O films on the surface condition of the mirror finished stainless steel substrate has been studied. Critical temperature and critical current of the films have been improved by heat-treating the substrate and incorporating buffer layers. Variation of the critical current with the bend radii of the film is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
2Lanthrop, D. K., Russek, S.E., and Buhrman, R. A., Appl. Phys. Lett. 51, 1554 (1987).CrossRefGoogle Scholar
3Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrani, N., Min-Lee, Y.M., McLean, W. L., and Groft, M., Appl. Phys. Lett. 51, 619 (1987).CrossRefGoogle Scholar
4Wu, X.D., Inam, A., Venkatesan, T., Chang, C.C., Chase, E.W., Barboux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett. 52 754 (1988).CrossRefGoogle Scholar
5Rokudo, K., Yamaguchi, J., Miyazaki, H., Mitsui, T., Hitotsuyanagi, H., and Yoshida, N., Proc. Int. Meet, on Adv. Mater. (May 30, 1988).Google Scholar
6Witanachchi, S., Kwok, H. S., Wang, X.W., and Shaw, D.T., Appl. Phys. Lett. 53 (3), 234 (1988).CrossRefGoogle Scholar
7Witanachchi, S., Patel, S., Kwok, H.S., and Shaw, D.T., Appl. Phys. Lett. (Feb. 13, 1989).Google Scholar
8McCullough, H.H., Fontana, M.G., and Beck, F.H., Trans. ASM. 43, 404 (1951).Google Scholar
9Hickman, J.W. and Gulbransen, E.A., Trans. AIME. 171, 344 (1947).Google Scholar