Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T21:13:53.308Z Has data issue: false hasContentIssue false

Formation and coarsening behavior of Y2BaCuO5 from peritectic decomposition of YBa2Cu3O7−x

Published online by Cambridge University Press:  03 March 2011

M.L. Griffith
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136
R.T. Huffman
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136
J.W. Halloran
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136
Get access

Abstract

Formation and coarsening behavior of the Y2BaCuO5 (211) phase has been examined in samples produced by peritectic decomposition of pure YBa2Cu3O7−x (123), resulting in 211 crystals and the liquid phase [BaCuO2-CuO]. Through various temperature (1020 °C-1060 °C) and time (0.25 h-10 h) studies, the fundamental coarsening behavior was determined. At 1040 °C, 211 crystals coarsen significantly over a 10 h period. The acicular crystals can be modeled by the diffusional ripening law, rr0 = (Kt)1/3, where r=V1/3. However, the log-normal distributions of the lengths, widths, and volumes for each coarsening run are much wider than general ripening theory would predict. Results from coarsening studies at 1020 °C and 1060 °C for 3 h reveal that the 211 crystal volume increases with increasing superheat. Prior coarsening of the 123 grain size yields much larger 211 particles, suggesting that the 211 crystals must nucleate at the 123 grain boundaries during peritectic decomposition, and this nucleation governs the size of the 211 crystals for short coarsening times. Addition of properitectic 211 (15 mole %) to pure 123 before peritectic decomposition strongly influences the particle habit of the resulting 211 crystals. Without any additions, acicular or needle-like 211 crystals result from the melting of 123. However, when equiaxed properitectic 211 is added to the 123, the resulting 211 is faceted, but still equiaxed. If acicular 211 is added to the starting composition, the resulting 211 is needle shaped. These results will be discussed in terms of 123 melt-texturing and directional solidification processing.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Taylor, J., Sainamthip, P., and Dockery, D. F., in High-Temperature Superconductors, edited by Brodsky, M. D., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), pp. 663666.Google Scholar
2Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Kieth, H. D., Appl. Phys. Lett. 52, 20742076 (1988).Google Scholar
3Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 12811283 (1992).Google Scholar
4Rodriguez, M. A., Chen, B. J., and Snyder, R. L., Physica C 195, 185194 (1992).Google Scholar
5Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 23522354 (1989).CrossRefGoogle Scholar
6Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390396 (1990).Google Scholar
7McGinn, P., Chen, W., Zhu, N., Lanagan, M., and Balachandran, U., Appl. Phys. Lett. 57, 14551457 (1990).CrossRefGoogle Scholar
8Halloran, J. W., Hodge, J. D., Chandler, D. B., Klemptner, L. J., Neal, M. J., Parish, M. V., Park, H. D., Pathare, V. M., Bakis, G., and Eagles, D., J. Am. Ceram. Soc. 75 (4), 903907 (1992).Google Scholar
9Neal, M., Chandler, D. B., Klemptner, L. J., and Parish, M. V., IEEE Transactions, Applied Superconductivity Conference Proceedings 1 (4), 175177 (1991).Google Scholar
10Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys., Part 1, 28 (7), 11891194 (1989).CrossRefGoogle Scholar
11McGinn, P., Chen, W.. Zhu, N., Tan, L., Varanasi, C., and Sengupta, S., Appl. Phys. Lett. 59, 120122 (1991).CrossRefGoogle Scholar
12Rodriguez, M. A., Snyder, R. L., Chen, B. J., Matheis, D. P., Misture, S. T., Frechette, V. D., Zorn, G., Gobel, H. E., and Seebacher, B., Physica C (in press).Google Scholar
13Schmid, R., Metall. Trans. B 14B, 473481 (1983).Google Scholar
14Kawabata, S., Hoshizaki, H., Kawahars, N., Enami, H., Shinohara, T., and Imura, T., Jpn. J. Appl. Phys., Part 2 letters, 29 (8), L1490L1492 (1990).CrossRefGoogle Scholar
15Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys., Part 2 letters, 29 (8), L1428L1431 (1990).Google Scholar
16Kase, J., Shimoyama, J., Yanagisawa, E., Kondoh, S., Matsubara, T., Morimoto, T., and Suzuki, M., Jpn. J. Appl. Phys., Part 2 letters, 29 (2), L277L279 (1990).Google Scholar
17Orehotsky, J., Wiesmann, H., Moodenbaugh, A. R., Suenaga, M., Wang, H. G., and Herman, H., IEEE Trans. Magn. 27 (2), 914916 (1991).CrossRefGoogle Scholar
18Zhou, L., Zhang, P., Ji, P., Wang, K., Wang, J., and Wu, X., IEEE Trans. Magn. 27 (2), 912913 (1991).Google Scholar
19Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74 (1), 7884 (1991).Google Scholar
20123 powder lot #03-0200 and 211 powder lot #03-0187 from Seattle Specialty Ceramics Inc., Bothell, WA.Google Scholar
21Stenstrop, G. and Engell, J., J. Less-Comm. Met. 164 & 165, 200207 (1990).CrossRefGoogle Scholar
22Dixon, W. J. and Massey, F. J. Jr., Introduction to Statistical Analysis, 3rd ed. (McGraw-Hill Publishing, New York, 1969), pp. 6366.Google Scholar
23Wong-Ng, W., JCPDS Grant-in-Aid Report 1987, Powder Diffraction File Card 38-1434.Google Scholar
24Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
25Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
26Ardell, A. J., Acta Metall. 20, 6171 (1972).CrossRefGoogle Scholar
27Ardell, A. J., Metall. Trans. 3, 13951401 (1972).CrossRefGoogle Scholar
28Ardell, A. J., Metallography 5, 285294 (1972).Google Scholar
29Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32 (11), 20012011 (1984).Google Scholar
30Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32 (11), 20132030 (1984).CrossRefGoogle Scholar
31Zhang, W., Osamura, K., and Ochiai, S., J. Am. Ceram. Soc. 73 (7), 19581964 (1990).Google Scholar
32Wong-Ng, W., Davis, K. L., and Roth, R. S., J. Am. CeTam. Soc. 71 (2), C64C67 (1988).Google Scholar
33Wong-Ng, W., private communication.Google Scholar
34Shi, D., Sengupta, S., Luo, J. S., Varanasi, C., and McGinn, P. J., unpublished.Google Scholar