Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:33:52.207Z Has data issue: false hasContentIssue false

The formation mechanism of planar defects in compound semiconductors grown epitaxially on {100} silicon substrates

Published online by Cambridge University Press:  31 January 2011

F. Ernst
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University. Cleveland, Ohio 44106
P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University. Cleveland, Ohio 44106
Get access

Abstract

Films of three compound semiconductors with the zincblende structure grown epitaxially on {100} silicon substrates by chemical vapor deposition or metal-organic chemical vapor deposition were investigated by transmission electron microscopy. The three systems have similar thermal mismatches but cover a wide range of lattice mismatch. From the comparison of the observed microstructures as well as from the investigation of early stages of film formation it is concluded that the lattice mismatch plays a minor role in the formation of stacking faults and twin boundaries. A formation mechanism is proposed for these defects which is based on deposition errors during the adsorption of atoms on {111} facets of film nuclei. The observed microstructural features are discussed in terms of this model.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Frank, F. C. and Merve, J. H. van der, Proc. R. Soc. London A198, 205 (1949).Google Scholar
2Powell, J. A., Matus, L. G., and Kuczmarski, M. A., J. Electrochem. Soc. 134, 1558 (1987).CrossRefGoogle Scholar
3Pirouz, P., Ernst, F., and Cheng, T. T., Mat. Res. Soc. Symp. Proc. 116 57 (1988).CrossRefGoogle Scholar
4Neave, J. H., Larsen, P. K., Joyce, B. A., Gowers, J. P., and Veen, J. F. van der, J. Vac. Sci. Technol. B1, 668 (1983).CrossRefGoogle Scholar
5Wierenga, P.E., Griffith, J.E., and Kubby, J.A., Phys. Rev. Lett. 59 2169 (1987).Google Scholar
6Fischer, R. J., Chand, N., Kopp, W., Morkoc, H., Erickson, L. P., and Youngman, R., Appl. Phys. Lett. 47, 397 (1985).CrossRefGoogle Scholar
7Matthews, J.W., Mader, S., and Light, T.B., J. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
8Hull, R., Bean, J.C., Leibenguth, R.E., and Werder, D. J., Mat. Res. Soc. Symp. Proc. 116, 505 (1988).CrossRefGoogle Scholar
9Maree, P.M.J., Barbour, J.C., Veen, J.F. van der, Kavanagh, K. L., Bulle-Lieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).Google Scholar
10Chorey, C. M., Thesis, M.S., Case Western Reserve University, 1987.Google Scholar
11Maeda, K., Suzuki, K., Fujita, S., Ichihara, M., and Hyodo, S., Philos. Mag. A 57, 573 (1988).CrossRefGoogle Scholar
12Gottschalk, H., Patzer, G., and Alexander, H., Phys. Status Solidi (a) 45, 207 (1978).CrossRefGoogle Scholar
13Cheng, T. T., Pirouz, P., and Powell, J. A., unpublished research.Google Scholar
14Taftø, J. and Spence, J. C. H., J. Appl. Crystallogr. 15, 60 (1982).CrossRefGoogle Scholar
15People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
16Weil, R. and Groves, W. O., J. Appl. Phys. 39, 4049 (1968).CrossRefGoogle Scholar
17Venables, J.A., Philos. Mag. A 27, 697 (1973).Google Scholar
18Akiyama, M., Ueda, T., and Onozawa, S., Mat. Res. Soc. Symp. Proc. 116, 79 (1988).Google Scholar
19Biegelsen, D.K., Ponce, F. A., Smith, A.J., and Tramontana, J.C., J. Appl. Phys. 61, 1856 (1987).CrossRefGoogle Scholar