Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:34:38.431Z Has data issue: false hasContentIssue false

The formation of metastable Ti–Al solid solutions by mechanical alloying and ball milling

Published online by Cambridge University Press:  03 March 2011

M. Oehring
Affiliation:
Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
T. Klassen
Affiliation:
Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
R. Bormann
Affiliation:
Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
Get access

Abstract

Elemental Ti–Al powder blends were mechanically alloyed in order to study phase formation during the alloying process. In addition, the stability of intermetallic phases upon milling was investigated separately in order to determine the origins of phase selection during the milling process. It was found that by mechanical alloying of powder blends, as well as by ball milling of Ti-aluminides for long milling times, the same metastable phases were formed for corresponding compositions, i.e., the hep solid solution for Al concentrations up to 60 at. % and the fcc solid solution for 75 at. % Al. X-ray diffraction (XRD) analyses indicated that the process of mechanical alloying occurred via the diffusion of Al into Ti. By lowering the milling intensity, a two-phase mixture of the hcp solid solution and the amorphous phase was observed for Ti50Al50 and confirmed by transmission electron microscopy (TEM). The results show that phase selection in the final state during mechanical alloying of Ti–Al powder blends and milling of intermetallic compounds is mainly determined by the energetic destabilization of the competing phases caused by the milling process. The destabilization is most pronounced in the case of intermetallic compounds due to the decrease in long-range order upon milling. For the final milling stage, phase formation can be predicted by considering the relative stabilities of the respective phases calculated by the CALPHAD method using the available thermodynamic data for the Ti–Al system.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kim, Y-W. and Dimiduk, D. M., JOM 43, 40 (1991).CrossRefGoogle Scholar
2Koch, C. C., in Materials Science and Technology, edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (VCH Weinheim, 1991), Vol. 15, p. 193.Google Scholar
3Yermakov, A. Y., Yurchikow, Y. Y., and Barinow, V. A., Phys. Met. Metallogr. 52, 50 (1981).Google Scholar
4Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
5Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
6Oehring, M., Yan, Z. H., Klassen, T., and Bormann, R., Phys. Status Solidi (a) 131, 671 (1992).Google Scholar
7JCPDS (Joint Committee on Powder Diffraction Standards) Card No. 9-98, International Centre for Diffraction Data, Swarthmore, PA, 1990.Google Scholar
8Chen, B. H. and Jacobson, R. A., Powder Diffr. 5, 144 (1990).Google Scholar
9Murray, J. L., Phase Diagrams of Binary Titanium Alloys (ASM INTERNATIONAL, Metals Park, OH, 1987).Google Scholar
10King, H. W., J. Mater. Sci. 1, 79 (1966).CrossRefGoogle Scholar
11Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).Google Scholar
12Schulz, R., Trudeau, M. L., and Van Neste, A., Mater. Sci. Engng. A 134, 1354 (1991).CrossRefGoogle Scholar
13Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).Google Scholar
14Computer Calculations ofPhase Diagrams, edited by Kaufman, L. and Bernstein, H. (Academic Press, New York, 1970).Google Scholar
15Lukas, H. L., Henig, E-T., and Zimmermann, B., CALPHAD 1, 225 (1977).Google Scholar
16Lukas, H. L., Weiss, J., and Henig, E-T., CALPHAD 6, 229 (1982).Google Scholar
17Bormann, R., Gärtner, F., and Zöltzer, K., J. Less-Common Met. 145, 19 (1988).Google Scholar
18Bormann, R. and Zöltzer, K., Phys. Status Solidi (a) 131, 691 (1992).Google Scholar
19Bormann, R., Oehring, M., Poeβnecker, W., and Leitner, G., internal report, GKSS Research Center, 1991.Google Scholar
20McCullough, C., Valencia, J. J., Levi, C. G., and Mehrabian, R., Acta Metall. 37, 1321 (1989).Google Scholar
21Kubaschewski, O. and Dench, W. A., Acta Metall. 3, 339 (1955).CrossRefGoogle Scholar
22Eckert, J., Schultz, L., Hellstern, E., and Urban, K., J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
23Cocco, G., Soletta, I., Battezzati, L., Baricco, M., and Enzo, S., Philos. Mag. B 61, 473 (1990).Google Scholar
24Guo, W., Martelli, S., Burgio, N., Magini, M., Padella, F., Paradiso, E., and Soletta, I., J. Mater. Sci. 26, 6190 (1990).CrossRefGoogle Scholar
25Inoue, N., Ishihara, K. N., and Shingu, P. H., Proc. Jpn. Int. SAMPE, 1989, p. 13.Google Scholar
26Kimura, H. and Kobayashi, S., Proc. Int. Symp. on Intermetallic Compounds—Structure and Mechanical Properties (JIMIS 6), edited by Izumi, O. (The Japan Institute of Metals, Sendai, Japan, 1991), p. 985.Google Scholar
27Burgio, N., Iasonna, A., Magini, M., Martelli, S., and Padella, F., Nuovo Cimento 13, 459 (1991).CrossRefGoogle Scholar
28Mishurda, J. C. and Perepezko, J. H., in Microstructurel/Property Relationships in Titanium Aluminides and Alloys, edited by Kim, Y-W. and Boyer, R. R. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), Vol. 3, p. 30.Google Scholar
29Klassen, T., Oehring, M., and Bormann, R., (1994, in press).Google Scholar
30Johnson, W. L., Progr. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
31Ma, E. and Atzmon, M., Phys. Rev. Lett. 67, 1126 (1991).CrossRefGoogle Scholar
32Luzzi, D. E. and Meshii, M., Res. Mechanica 21, 207 (1987).Google Scholar
33Oehring, M., Klassen, T., and Bormann, R., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Whitten berger, J. D., Darolia, R., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 873.Google Scholar