Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T04:30:51.275Z Has data issue: false hasContentIssue false

Formation of NdBa2Cu3O7−δ amorphous phase by combining aero-acoustic levitation and splat quenching

Published online by Cambridge University Press:  31 January 2011

K. Nagashio*
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
W. H. Hofmeister
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
D. E. Gustafson
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
A. Altgilbers
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
R. J. Bayuzick
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
K. Kuribayashi
Affiliation:
Institute of Space and Astronautical Science, 3-3-1, Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan
*
Address all correspondence to this author. e-mail: nagashio@materials.isas.ac.jp
Get access

Abstract

Small spherical samples (diameter approximately 2 mm) of NdBa2Cu3O7−δ (Nd123) were fully melted in Ar gas flow in an aero-acoustic levitation device and subsequently rapidly cooled by splat quenching. For samples quenched above the liquidus, the microstructual and x-ray-diffraction (XRD) observations suggested the existence of the amorphous phase with small quantities of the BaCuO2 and BaCu2Ox. The high-temperature XRD results indicated that the decomposition of the amorphous phase, probably assisted by atmospheric CO2 and H2O, led to formation of the BaCO3 phase at 400 °C and, subsequently, the Nd123 phase was formed by the solid diffusion above 800 °C. Another set of Nd123 samples was fully melted in O2 gas flow, undercooled while levitated, and then splat quenched at a temperature below the peritectic temperature (TP). These samples possessed a microcrystalline microstructure of the Nd123 phase that was confirmed by XRD. This indicated that the Nd123 phase was solidified directly from the undercooled melt quenched below TP.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murakami, M., Morita, M., and Koyama, N., Jpn. J. Appl. Phys. 28, L1125 (1989).CrossRefGoogle Scholar
2.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, Y., and Tanaka, S., Adv. Supercond. 1, 285 (1989).Google Scholar
3.Chong, I., Hiroi, Z., Izumi, M., Shimoyama, J., Nakayama, Y., Kishio, K., Terashima, T., Bando, Y., and Takano, M., Science 276, 770 (1997).CrossRefGoogle Scholar
4.Hishinuma, Y., Fujii, H., Matshumoto, A., Hirata, K., Takeya, H., Kumakura, H., and Togano, K., Jpn. J. Appl. Phys. 37, L859 (1998).CrossRefGoogle Scholar
5.Harada, T. and Kuji, T., J. Mater. Res. 9, 372 (1994).CrossRefGoogle Scholar
6.Holesinger, T.G., Miller, D.J., and Chumbley, L.S., J. Mater. Res. 7, 1658 (1992).CrossRefGoogle Scholar
7.Nassau, K., Miller, A.E., Gyorgy, E.M., and Siegrist, T., J. Mater. Res. 4, 1330 (1989).CrossRefGoogle Scholar
8.Kramer, M.J., Margulies, L., Arrasmith, S.R., Dennis, K.W., Lang, J.C., McCallum, R.W. and Gallagher, P.K., J. Mater. Res. 9, 1661 (1994).CrossRefGoogle Scholar
9.Folkerts, T.J., Yoo, S.I., Xu, Youwen, Kramer, M.J., Dennis, K.W., and McCallum, R.W., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D.T., Tsuei, C.C., Schneider, T.R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 335.Google Scholar
10.Folkerts, T.J., Dennis, K.W., Yoo, S.I., Xu, Youwen, Kramer, M.J., and McCallum, R.W., IEEE Trans. Appl. Supercond. 3, 1150 (1993).CrossRefGoogle Scholar
11.McCallum, R.W., Kramer, M.J., Folkerts, T.J., Arrasmith, S.R., Merkle, B.D., Yoo, S.I., Xu, Youwen, and Dennis, K.W., in Physical and Material Properties of High Temperature Superconductors, edited by Malik, S.K. and Shah, S.S. (Nova Science Publishers, New York, 1993), p. 667.Google Scholar
12.Milonopoulou, V., Forster, K.M., Formica, J.P., Kulik, J., Richardson, T.J., and Luss, D., J. Mater. Res. 9, 275 (1994).CrossRefGoogle Scholar
13.Yoshizumi, M., Kambara, M., Shiohara, Y., and Umeda, T., Physica C 334, 77 (2000).CrossRefGoogle Scholar
14.Kambara, M., Nakamura, M., Shiohara, Y., and Umeda, T., Physica C 275, 127 (1997).CrossRefGoogle Scholar
15.Shiohara, Y., ISTEC (private communication).Google Scholar
16.O ’Bryan and, H.M.Gallagher, P.K., in Ceramic Superconductors II, edited by Yan, M.F. (American Ceramic Society, Westerville, OH, 1988), p. 89.Google Scholar
17.Yan, M.F., Barns, R.L., O’Bryan, H.M. Jr., Gallagher, P.K., Sherwood, R.C., and Jin, S., Appl. Phys. Lett. 51, 532 (1987).CrossRefGoogle Scholar
18.Olive, J.R., Hofmeister, W.H., Bayuzick, R.J., and Vlasse, M., J. Mater. Res. 14, 3843 (1999).CrossRefGoogle Scholar
19.Olive, J.R., Hofmeister, W.H., Bayuzick, R.J., and Vlasse, M., J. Mater. Res. 14, 3851 (1999).CrossRefGoogle Scholar
20.Nagashio, K., Takamura, Y., Kuribayashi, K., and Shiohara, Y., J. Cryst. Growth 200, 118 (1999).CrossRefGoogle Scholar
21.Nagashio, K., Kuribayashi, K., and Takamura, Y., Acta Mater. 48, 3049 (2000).CrossRefGoogle Scholar
22.Bertero, G.A., Hofmeister, W.H., Robinson, M.B., and Bayuzick, R.J., Metall. Trans. A 22A, 2713 (1991).CrossRefGoogle Scholar