Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T20:18:09.614Z Has data issue: false hasContentIssue false

Formation of stable dopant interstitials during ion implantation of silicon

Published online by Cambridge University Press:  31 January 2011

S.J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R.J. Culbertson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. Narayan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

High concentrations of self-interstitials are trapped by dopant atoms during ion implantation into Si. For group V dopants, these complexes are sufficiently stable to survive solid-phase-epitaxial (SPE) growth but break up on subsequent thermal processing and cause a transientenhanced diffusion. Dopant diffusion coefficients are enhanced by up to five orders of magnitude over tracer values and are characterized by an activation energy of approximately one half of the tracer values. In the case of group III dopants, any complexes formed during implantation do not survive SPE growth but a second source of self-interstitials becomes significant and leads to similar transient effects. This is the damaged layer underlying the original amorphous/crystalline interface. These observations provide direct evidence for longrange self-interstitial migration in Si, and we believe these are the first observations of the interstitialcy diffusion mechanism with no vacancy contribution. We propose that the complexes are simply interstitial dopant atoms (in a split <100> interstitialcy configuration) that are particularly stable in the case of group V dopants. As they decay self-interstitials are released and cause the transient-enhanced diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Corbett, J., Kleinhenz, R. L., and Wilsey, N. D., “Defects in Semiconductors,” in Materials Research Society Symposia Proceedings, edited by Narayan, J. and Tan, T. Y. (North-Holland, New York, 1981), Vol. 2, p. 1.Google Scholar
2Narayan, J., Holland, O. W., and Appleton, B. R., J. Vac. Sci. Technol. B 1, 871 (1983).CrossRefGoogle Scholar
3Pennycook, S. J., Narayan, J., and Holland, O. W., J. Appl. Phys. 55, 837 (1984).CrossRefGoogle Scholar
4Haasen, P., in Physical Metallurgy (Cambridge U. P., London, 1978), p. 203.Google Scholar
5Fair, R. B., in Impurity Doping Processes in Silicon, edited by Wang, F. F. Y. (North-Holland, New York, 1981), p. 315.CrossRefGoogle Scholar
6Pennycook, S. J., Narayan, J., and Holland, O. W., Appl. Phys. Lett. 44, 547 (1984).CrossRefGoogle Scholar
7Pennycook, S. J., Narayan, J., and Holland, O. W., J. Cryst. Growth 70, 597 (1984).CrossRefGoogle Scholar
8Pennycook, S. J., Narayan, J., and Culbertson, R. J., “Impurity Diffusion and Gettering in Silicon,” in Materials Research Society Symposia Proceedings, edited by Fair, R. B., Pearce, C. W., and Washburn, J. (Materials Research Society, Pittsburgh, PA, 1985), Vol. 36, p. 151.Google Scholar
9Hirsch, P., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., in Electron Microscopy of Thin Crystals (Krieger, New York, 1977), p. 263.Google Scholar
10Tan, T. Y., Goesele, U., and Morehead, F. F., Appl. Phys. A 31, 97 (1983).CrossRefGoogle Scholar
11Narayan, J., Holland, O. W., Eby, R. E., Wortman, J. J., Ozguz, V., and Rozgonyi, G. A., Appl. Phys. Lett. 43, 957 (1983).CrossRefGoogle Scholar
12Olson, G. L., Roth, J. A., Hess, L. D., and Narayan, J., “Energy Beam-Solid Interactions and Transient Thermal Processing,” in Materials Research Society Symposia Proceedings, edited by Fan, J. C. C. and Johnson, N. M. (North-Holland, New York, 1984), Vol. 23, p. 375.Google Scholar
13Wu, N. R., Sadana, D. K., and Washburn, J., Appl. Phys. Lett. 44, 782 (1984).Google Scholar
14Chu, W. K., “Laser and Electron Beam Processing of Electronic Materials,” in Electrochemical Society Proceedings, edited by Anderson, C. L., Celler, G. K., and Rozgonyi, G. A. (The Electrochemical Society, Pennington, NJ, 1980), p. 361.Google Scholar
15Schwenker, R. O., Pan, E. S., and Lever, R. F., J. Appl. Phys. 42, 3195 (1971).CrossRefGoogle Scholar
16Lietoila, A., Gibbons, J. F ., and Sigmon, T. W., Appl. Phys. Lett. 36, 765 (1980).CrossRefGoogle Scholar
17Powder Diffraction File, edited by Berry, L. G. (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1981).Google Scholar
18Jain, R. K. and Overstraeten, R. Van, J. Appl. Phys. 44, 2437 (1973).Google Scholar
19Holland, O. W., Narayan, J., and Fathy, D., Nucl. Instrum. Methods B 7/8, 243 (1985).Google Scholar
20Pennycook, S. J., Narayan, J., and Holland, O. W., J. Electrochem. Soc. 132, 1962 (1985).CrossRefGoogle Scholar
21Culbertson, R. J. and Pennycook, S. J., Nucl. Instrum. Methods B 13, 490 (1986).CrossRefGoogle Scholar
22Robinson, M. T. and Torrens, I. M., Phys. Rev. B 9, 5008 (1974).Google Scholar
23Robinson, M. T., Phys. Rev. B 27, 5347 (1983).Google Scholar
24Seeger, A., Foil, H., and Frank, W., in Radiation Effects in Semiconductors 1976, edited by Urli, N. B. and Corbett, J. W. (Institute of Physics, London, 1977), Conf. Ser. No. 31, p. 12.Google Scholar
25Mizuo, S. and Higuchi, H., J. J. Appl. Phys. 20, 739 (1981).Google Scholar
26Tan, T. Y. and Ginsberg, B. J., Appl. Phys. Lett. 42, 448 (1983).CrossRefGoogle Scholar
27Elkin, E. L. and Watkins, G. D., Phys. Rev. 174, 881 (1968).CrossRefGoogle Scholar
28Watkins, G. D., in Radiation Damage in Semiconductors, edited by Baruch, P. (Dunod, Paris, 1965), p. 97.Google Scholar
29Watkins, G. D., Phys. Rev. B 12, 5824 (1975).Google Scholar
30Tan, S. I., Berry, B. S., and Frank, W., in Ion Implantation in Semiconductors and Other Materials, edited by Crowder, B. L. (Plenum, New York, 1973), p. 19.CrossRefGoogle Scholar
31Frank, W., Radiat. Eff. 21, 119 (1974).Google Scholar
32Blount, E. I., J. Appl. Phys. 30, 1218 (1959).CrossRefGoogle Scholar
33Hirata, M., Hirata, M., Saito, H., and Crawford, J. H., Jr., J. Appl. Phys. 38, 2433 (1967).CrossRefGoogle Scholar