Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T18:43:24.627Z Has data issue: false hasContentIssue false

Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta, and amorphous phases of silicon nitride

Published online by Cambridge University Press:  31 January 2011

T. K. Trout
Affiliation:
University of Maryland, Department of Chemistry and Biochemistry, College Park, Maryland 20740
J. M. Bellama
Affiliation:
University of Maryland, Department of Chemistry and Biochemistry, College Park, Maryland 20740
F. E. Brinckman
Affiliation:
National Bureau of Standards, Ceramics Division, Gaithersburg, Maryland 20899
R. A. Faltynek
Affiliation:
National Bureau of Standards, Ceramics Division, Gaithersburg, Maryland 20899
Get access

Abstract

Fourier transform infrared spectroscopy (FT–IR) forms the basis for determining the morphological composition of mixtures containing alpha, beta, and amorphous phases of silicon nitride. The analytical technique, involving multiple linear regression treatment of Kubelka-Munk absorbance values from diffuse reflectance measurements, yields specific percent composition data for the amorphous phase as well as the crystalline phases in ternary mixtures of 0–1% by weight Si3N4 in potassium bromide.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Luongo, J. P., Appl. Spectrosc. 38, 195 (1984).CrossRefGoogle Scholar
2Hu, S.M., J. Electrochem. Soc. 113, 693 (1966).CrossRefGoogle Scholar
3Hu, S.M. and Gregor, L. V., J. Electrochem. Soc. 114, 826 (1967).CrossRefGoogle Scholar
4Chu, T. L., Lee, C. H., and Gruber, G. A., J. Electrochem. Soc. 114, 717 (1967).CrossRefGoogle Scholar
5Jack, K.H., J. Mater. Sci. 11, 1135 (1976).CrossRefGoogle Scholar
6Oyama, Y. and Kamigaito, O., Japan J. Appl. Phys. 10, 1637 (1971).CrossRefGoogle Scholar
7Jack, K. H. and Wilson, W. I., Nature 238, #80, 28 (1972).Google Scholar
8Wada, N., Solin, S. A., Wong, J., and Prochazka, S., J. Non-Cryst. Solids 43, 7 (1981).CrossRefGoogle Scholar
9Luongo, J. P., J. Electrochem. Soc. 130, 1560 (1983).CrossRefGoogle Scholar
10Ermer, E. and Ptak, W. S., J. Molec. Struct. 143, 5 (1986).CrossRefGoogle Scholar
11Takase, A., Umebayashi, S., and Kishi, K., J. Mat. Sci. Lett. 1, 529 (1982).CrossRefGoogle Scholar
12Takase, A., Umebayashi, S., and Kishi, K., Japan J. Appl. Phys. 21, 1447 (1982).CrossRefGoogle Scholar
13Busca, G., Lorenzelli, V., Porcile, G., Baraton, M.I., Quintard, P., and Marchand, R., Mat. Chem. and Phys. 14, 123 (1986).CrossRefGoogle Scholar
14Busca, G., Lorenzelli, V., Baraton, M. I., Quintard, P., and Marchand, R., J. Molec. Struct. 143, 9 (1986).CrossRefGoogle Scholar
15Baraton, M. I., Marchand, R., and Quintard, P., J. Molec. Struct. 143, 9 (1986).CrossRefGoogle Scholar
16Shreedhara, E. S., Blitz, J. P., and Leyden, D. E., Anal. Chem. 58, 3167 (1986).Google Scholar
17Kubelka, P. and Munk, E, Z. Tech. Phys. 12, 593 (1931).Google Scholar
18Kubelka, P., J. Opt. Soc. Am. 38, 448 (1948).CrossRefGoogle Scholar
19Fuller, M. P. and Griffiths, P. R., Anal. Chem. 50, 1906 (1978).CrossRefGoogle Scholar
20Smyrl, N. R., Fuller, E. R. Jr, and Powell, G. L., in Analytical Chemistry Symposium Series, edited by Lyon, W. S. (Elsevier, Amsterdam, 1984), Vol. 19, p. 357.Google Scholar
21McKenzie, M.T. and Koenig, J. L., Appl. Spectrosc. 39, 408 (1985).CrossRefGoogle Scholar
22Hardie, D. and Jack, K. H., Nature 180, #4581, 332 (1957).CrossRefGoogle Scholar
23Kato, K., Inoue, Z., Kijima, K., Yamane, T., and Kawada, J., J. Am. Ceram. Soc. 58, 90 (1975).CrossRefGoogle Scholar
24Gruen, R., Acta Cryst. B35, 800 (1979).CrossRefGoogle Scholar
25Skoog, D.A. and West, D. M., Principles of Instrumental Analysis (Saunders, Philadelphia, PA, 1980), p. 118.Google Scholar
26Chung, F. and Scott, R. W., J. Appl. Cryst. 6, 225 (1973).CrossRefGoogle Scholar
27Rockley, M. G., Chem. Phys. Lett. 68, 455 (1979).CrossRefGoogle Scholar
28Childers, J. W. and Palmer, R. A., Am. Lab. 18, #3, 22 (1986).Google Scholar
29Childers, J.W., Roehl, R., and Palmer, R. A., Anal. Chem. 58, 2629 (1986).CrossRefGoogle Scholar
30Wild, S., Elliot, H., and Thompson, D. P., J. Mat. Sci. 13, 1769 (1978).CrossRefGoogle Scholar