Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T23:29:50.010Z Has data issue: false hasContentIssue false

From meandering to straight grain boundaries: Improving the structures of artificially induced grain boundaries in superconducting YBa2Cu3Oy bicrystals

Published online by Cambridge University Press:  31 January 2011

Xiao-Feng Zhang
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
Volk R. Todt
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
Dean J. Miller
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

This paper presents several key aspects of our approach to preparing artificially induced [001] tilt grain boundaries (GB's) with uniform, well-defined structures in YBa2Cu3Oy (YBCO) superconductors. GB structures formed in thin film and bulk bicrystals, respectively, will be compared. In YBCO thin film bicrystals, meandering rather than planar GB's are formed. Using a low film deposition rate has been demonstrated to reduce the magnitude of meander significantly, but complete elimination of the meander has not yet been accomplished. Thus, we have developed a dual-seeded-melt-texture process to produce uniform, planar GB's with controllable misorientation angles in YBCO bulk bicrystals. Transmission electron microscopy (TEM) studies reveal a remarkably planar and simple configuration on different length scales. Such a simple structure allows for an insightful interpretation of transport behavior across individual GB's.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
3.Ivanov, Z. G., Nilsson, P. A., Winkler, D., Alarco, J. A., Claeson, T., Stepantsov, E. A., and Tzalenchuk, A. Ya., Appl. Phys. Lett. 59, 3030 (1991).CrossRefGoogle Scholar
4.Traeholt, C., Wen, J. G., Zandbergen, H. W., Shen, Y., and Hilgenkamp, J. W. M., Physica C 230, 425 (1994).CrossRefGoogle Scholar
5.Kabius, B., Seo, J. W., Amrein, T., Dahne, U., Scholen, A., Siegel, M., Urban, K., and Schultz, L., Physica C 231, 123 (1994).CrossRefGoogle Scholar
6.Seo, J. W., Kabius, B., Dahne, D., Scholen, A., and Urban, K., Physica C. 245, 25 (1995).CrossRefGoogle Scholar
7.Miller, D. J., Steel, D. G., Yuan, F., Hettinger, J. D., Gray, K. E., Talvacchio, J., and Kang, J. H., Proceedings of The 1995 International Workshop on Superconductivity, June 18–21, Maui, Hawaii.Google Scholar
8.Miller, D. J., Roberts, T. A., Kang, J. H., Talvacchio, J., Buchholz, D. B., and Chang, R. P. H., Appl. Phys. Lett. 66, 2561 (1995).CrossRefGoogle Scholar
9.Alarco, J. A., Olsson, E., Ivanov, Z. G., Winkler, D., Stepantsov, E. A., Lebedev, O. I., Vasiliev, A. L., Tzalenchuk, A. Ya., and Kiselev, N. A., Physica C 247, 263 (1995).CrossRefGoogle Scholar
10.Zhang, X. F., Miller, D. J., and Talvacchio, J., J. Mater. Res. 11, 2440 (1996).CrossRefGoogle Scholar
11.Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).CrossRefGoogle Scholar
12.Field, M. B., Cai, X. Y., Babcock, S. E., and Larbalestier, D. C., Trans. on Appl. Supercond. 3, 1479 (1993).CrossRefGoogle Scholar
13.Sarma, C., Schindler, G., Haase, D. G., Koch, C. C., Saleh, A. M., and Kingon, A. I., Appl. Phys. Lett. 64, 109 (1994).CrossRefGoogle Scholar
14.Tsu, I-Fei, Babcock, S. E., and Kaiser, D. L., J. Mater. Res. 11, 1383 (1996).CrossRefGoogle Scholar
15.Talvacchio, J., Forrester, M. G., Gavaler, J. R., and Braggins, T. T., in Science and Technology of Thin Film Superconductors II, edited by McConnell, R. and S., A.Wolf (Plenum Press, New York, 1990), pp. 5766.CrossRefGoogle Scholar
16.Todt, V. R., Zhang, X. F., and Miller, D. J., Appl. Phys. Lett. 69, 3746 (1996).CrossRefGoogle Scholar
17.St.Louis-Weber, M., Dravid, V. P., Todt, V. R., Zhang, X. F., Miller, D. J., and Balachandran, U., Phys. Rev. B 54, 16238 (1996).CrossRefGoogle Scholar
18.Norton, D. P., Lowndes, D. H., Zheng, X. Y., Zhu, S., and Warmack, R. J., Phys. Rev. B 44, 9760 (1991).CrossRefGoogle Scholar
19.Zhu, X., Xiong, G. C., Liu, R., Li, Y. J., Lain, G. J., Li, J., and Gan, Z. Z., Physica C 216, 153 (1993).CrossRefGoogle Scholar
20.Babcock, S. E. and Vargas, J. L., Annu. Rev. Mater. Sci. 25, 193 (1995).CrossRefGoogle Scholar
21.Kim, D. H., Miller, D. J., Smith, J. C., Holobopp, R. A., Kang, J. H., and Talvacchio, J., Phys. Rev. B 44, 7607 (1991).CrossRefGoogle Scholar