Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T01:43:26.907Z Has data issue: false hasContentIssue false

The functionalization of carbon nanofibers with 4,4′-diaminodiphenylmethane, a curing agent for epoxy resins

Published online by Cambridge University Press:  31 January 2011

R. Chaos-Morán
Affiliation:
Departamento de Ciencia e Ingeniería de Materiales, ESCET, Universidad Rey Juan Carlos, Móstoles 28933 Madrid, Spain
M. Campo
Affiliation:
Departamento de Ciencia e Ingeniería de Materiales, ESCET, Universidad Rey Juan Carlos, Móstoles 28933 Madrid, Spain
S.G. Prolongo
Affiliation:
Departamento de Ciencia e Ingeniería de Materiales, ESCET, Universidad Rey Juan Carlos, Móstoles 28933 Madrid, Spain
M.D. Escalera
Affiliation:
Departamento de Ciencia e Ingeniería de Materiales, ESCET, Universidad Rey Juan Carlos, Móstoles 28933 Madrid, Spain
A. Ureña*
Affiliation:
Departamento de Ciencia e Ingeniería de Materiales, ESCET, Universidad Rey Juan Carlos, Móstoles 28933 Madrid, Spain
*
a) Address all correspondence to this author. e-mail: alejandro.urena@urjc.es
Get access

Abstract

A functionalization technique for carbon nanofibers (CNFs) via acid is described. The integrity and chemical nature of the CNFs during the different stages of the applied treatment (oxidation, activation, and functionalization) were examined using different microscopic, chemical, and thermal analysis techniques. The treatment effect on the dispersion ability of the nanofibers in different solvents (tetrahydrofuran, chloroform, and acetone) was also evaluated. Results show that chloroform is the best medium to reach good dispersions and stability of the CNFs in a wide range of concentrations. Using this medium, the functionalization process using 4,4′-diaminodiphenylmethane (DDM) was adopted for the fabrication of reactive CNFs with linker molecules on their surface capable of binding covalently to thermosetting polymers, such as epoxy. The DDM surface derivatized CNFs have been used as reinforcement in epoxy matrix nanocomposites with improved thermomechanical properties in relation to non-treated carbon nanofibers.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Andrews, R. and Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8,(1) 31 (2004).CrossRefGoogle Scholar
2Tan, E.P.S. and Lim, C.T.: Mechanical characterization of nano-fibers: A review. Compos. Sci. Technol. 66,(9) 1102 (2006).Google Scholar
3Njuguna, J. and Pielichowski, K.: Polymer nanocomposites for aerospace applications: Fabrication. Adv. Eng. Mater. 6,(4) 193 (2004).CrossRefGoogle Scholar
4Xie, X.L.Mai, Y.W. and Zhou, X.P.: Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng., R 49,(4) 89 (2005).Google Scholar
5Fiedler, B.Gojny, F.H.Wichmann, M.G.H.Nolte, M.C.M. and Schulte, K.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66,(16) 3115 (2006).CrossRefGoogle Scholar
6Gojny, F.H.Wichmann, M.H.G.Fiedler, B. and Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: A comparative study. Compos. Sci. Technol. 65(15-16), 2300 (2005).CrossRefGoogle Scholar
7Thostenson, E.T.Li, C.Y. and Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65(3-4), 491 (2005).Google Scholar
8Bahr, J.L. and Tour, J.M.: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12,(7) 1952 (2002).CrossRefGoogle Scholar
9Sinnot, S.B.: Chemical functionalization of carbon nanotubes. J. Nanosci. Nanotechnol. 2,(2) 113 (2002).Google Scholar
10Tasis, D.Tagmatarchis, N.Bianco, A. and Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006).CrossRefGoogle ScholarPubMed
11Valentini, L.Armentano, I.Puglia, D. and Kenny, J.M.: Dynamics of amine functionalised nanotubes/epoxy composites by FTIR and dielectric relaxation spectroscopy. Carbon 42, 323 (2004).Google Scholar
12Wang, Z.Liang, Z.Y.Wang, B.Zhang, C. and Kramer, L.: Processing and property investigation of single-walled carbon nano-tube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites Part A 35,(10) 1225 (2004).Google Scholar
13Li, J. and Lukehart, C.M.: Formation of graphitic carbon nanofiber (GCNF)/silica gel composites using surface-functionalized GCNFs and sol-gel processing. Compos. Interfaces 11,(7) 525 (2004).Google Scholar
14Zhong, W.H.Li, J.Xu, L.Y.R.Michel, J.A.Sullivan, L.M. and Lukehart, C.M.: Graphitic carbon nanofiber (GCNF) polymer materials. I. GCNF epoxy monoliths using hexanediamine linker molecules. J. Nanosci. Nanotechnol. 4,(7) 794 (2004).CrossRefGoogle ScholarPubMed
15Zhong, W.H.Li, J.Lukehart, C.M. and Xu, L.Y.R.: Graphitic carbon nanofiber (GCNF)/polymer materials. II. GCNF/epoxy monoliths using reactive oxydianiline linker molecules and the effect of nanofiber reinforcement on curing conditions. Polym. Compos. 26,(2) 128 (2005).Google Scholar
16Ausman, K.D.Piner, R.Lourie, O.Ruoff, R.S. and Korobov, M.: Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. J. Phys. Chem. B 104 (38), 8911 (2000).Google Scholar
17Li, J.Vergne, M.J.Mowles, E.D.Zhong, W.H.Hercules, D.M. and Lukehart, C.M.: Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon 43,(14) 2883 (2005).Google Scholar
18Barral, L.Díez, F.J., García-Garabal, S., López, J., Montero, B.Montes, R.Ramírez, C., and Rico, M.: Thermodegradation kinetics of a hybrid inorganic-organic epoxy system. Eur. Polym. J. 41, 1662 (2007).Google Scholar
19Hontoria-Lucas, C., López-Peinado, A.J., López-González, J.D., Rojas-Cervantes, M.L., and Martín-Aranda, R.M.: Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 33,(11) 1585 (1995).CrossRefGoogle Scholar