Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T03:49:08.443Z Has data issue: false hasContentIssue false

Glass transformation, heat capacity, and structure of GexSe100−x glasses studied by temperature-modulated differential scanning calorimetry experiments

Published online by Cambridge University Press:  31 January 2011

T. Wagner
Affiliation:
Department of Electrical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Canada
S. O. Kasap
Affiliation:
Department of Electrical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Canada
Kouji Maeda
Affiliation:
Department of Electronic Engineering, Miyazaki University, Miyazaki, 889–21, Japan
Get access

Abstract

The recent novel temperature-modulated differential scanning calorimetry (DSC) (MDSCTM TA Instruments) technique has been applied to characterize the thermal properties of Ge–Se chalcogenide glasses in the glass transition region. All samples in this work were given the same thermal history by heating to a temperature above the glass transition, equilibrating, and then cooling at a rate of 5 °C/min to a temperature of 20 °C. The reversing and nonreversing heat flows through the glass transformation region during both heating and cooling schedules were measured, and the values of the parameters Tg, ΔH, Cp, and ΔCp, which characterize the thermal events in the glass transition region, were determined. The ability of determining the reversible heat flow in MDSC enables an accurate measurement of the true heat capacity (that normally associated with reversible heat flow), which could not be done hitherto in conventional thermal analysis where the detected heat flow is the total heat flow, the sum of reversing and nonreversing heat flows. The structurally controlled parameters Tg, ΔH, Cp, and ΔCp reveal extrema when the Ge–Se glass system reaches the average coordination number 〈r〉 = 2.67 at 33.3 at.% Ge which corresponds to the stoichiometric composition GeSe2. We also observed extrema in the composition dependence of the above thermal parameters at 20.0 and 40.0 at.% Ge which correspond to stoichiometric compositions GeSe4 and Ge2Se3 with average coordination numbers 2.40 and 2.80, respectively. No such clear local maxima below and above the 33.3 at.% Ge composition could be observed previously in thermal analysis. We compare our MDSC results with previously published works on glass transition in Ge–Se glasses and discuss the results in terms of recent structural models for chalcogenide glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wunderlich, B., Thermal Analysis (Academic Press, Boston, 1990), p. 123.CrossRefGoogle Scholar
2.Reading, M., Trends in Polymers 1, 248 (1993).Google Scholar
3.Reading, M., Elliott, D., and Hill, V. L., J. Thermal Analysis 40, 949 (1993).CrossRefGoogle Scholar
4.Reading, M., Luget, A., and Wilson, R., Thermochimica Acta 238, 295 (1994).CrossRefGoogle Scholar
5.Wunderlich, B., Jin, Y., and Boller, A., Thermochimica Acta 238, 277 (1994).CrossRefGoogle Scholar
6.Sauerbrunn, S. and Thomas, L., American Laboratory January Issue 19 (1995).Google Scholar
7.Thomas, L., NATAS Notes (North American Thermal Analysis Society, Sacramento, CA, USA) 26, 48 (1995).Google Scholar
8.Gill, P. S., Sauerbrunn, S. R., and Reading, M., J. Thermal Analysis 40, 931 (1993).CrossRefGoogle Scholar
9.Sauerbrunn, S., Crowe, B., and Reading, M., American Laboratory, August issue, 44 (1992).Google Scholar
10.Hassel, B., NATAS Notes (North American Thermal Analysis Society, USA) 26, 54 (1995).Google Scholar
11.Kasap, S. O. and Yannacopoulos, S., Physics and Chemistry of Glasses 31, 71 (1990).Google Scholar
12.Elliott, S. R., Physics of Amorphous Materials (Longman, New York, 1990), p. 53.Google Scholar
13.Feltz, A., Amorphous Inorganic Materials and Glasses (VCH, Weinheim, Germany, 1993), pp. 16, 212.Google Scholar
14.Ewen, P. J. S. and Owen, A. E., in High-Performance Glasses (Blackie Glasgow, London, 1992), Chap. 14, pp. 287337, and references therein.Google Scholar
15.Andriesh, A. M., Ponomar, V. V., Smirnov, V. L., and Mironos, A. V., Sov. J. Quantum Electron 16, 721 (1986).CrossRefGoogle Scholar
16.Wagner, T., Jilkova, R., Frumar, M., and Vlcek, M., Int. J. Electronics 77, 185 (1994).CrossRefGoogle Scholar
17.Kosa, T. and Janossy, T., Philos. Mag. B 64, 355 (1991).CrossRefGoogle Scholar
18.Sleeckx, E., Tichy, L., Nagels, P., and Callaerts, R., J. Non-Cryst. Solids 198–200, 723 (1996).CrossRefGoogle Scholar
19.Elliott, S. R. and Tichomirov, V. K., J. Non-Cryst. Solids 198–200, 669 (1996).CrossRefGoogle Scholar
20.Fritzsche, H., Phys. Rev. B 52, 15 854 (1995).CrossRefGoogle Scholar
21.Kasap, S. O., in The Handbook of Imaging Materials (Marcel Dekker, New York, 1991), Chap. 8, pp. 329377, and references therein.Google Scholar
22.Blanc, D. and Wilson, J. I. B., Opt. Eng. 27, 917 (1988).CrossRefGoogle Scholar
23.Katsuyama, T., Ishida, K., Satoh, S., and Matsuda, H., Appl. Phys. Lett. 45, 925 (1984).CrossRefGoogle Scholar
24.Klocek, P., Roth, M., and Rock, R. D., Opt. Eng. 26, 88 (1987).CrossRefGoogle Scholar
25.Ikari, T., Tanaka, T., Ura, K., Maeda, K., and Futagami, K., Phys. Rev. B 47, 4984 (1993).CrossRefGoogle Scholar
26.Wagner, T. and Kasap, S. O., Philos. Mag. B 74, 667 (1996).CrossRefGoogle Scholar
27.Phillips, J. C., J. Non-Cryst. Solids 34, 153 (1979).CrossRefGoogle Scholar
28.Phillips, J. C., J. Non-Cryst. Solids 44, 17 (1981).CrossRefGoogle Scholar
29.Phillips, J. C., J. Non-Cryst. Solids 43, 37 (1981).CrossRefGoogle Scholar
30.Phillips, J. C., Physics Today, February issue, 27 (1982).CrossRefGoogle Scholar
31.Thorpe, M. F., J. Non-Cryst. Solids 57, 355 (1983).CrossRefGoogle Scholar
32.Thorpe, M. F., J. Non-Cryst. Solids 76, 109 (1985).CrossRefGoogle Scholar
33.Phillips, J. C. and Thorpe, M. F., Solid State Commun. 53, 699 (1985).CrossRefGoogle Scholar
34.Malaurent, J. C. and Dixmier, J., J. Non-Cryst. Solids 35–36, 1227 (1980).CrossRefGoogle Scholar
35.Senapati, U. and Varshneya, a. K., J. Non-Cryst. Solids 185, 289 (1995).CrossRefGoogle Scholar
36.Tanaka, K.Phys. Rev. B, Cond. Matt. 39, 1270 (1989).CrossRefGoogle Scholar
37.Uemura, O., Sagara, Y., and Satow, T., Phys. Status Solidi (a) 32, K91 (1975).CrossRefGoogle Scholar
38.Fischer-Colbrie, A. and Fuoss, P. H., J. Non-Cryst. Solids 126, 1 (1990).CrossRefGoogle Scholar
39.Pachali, K. E., Ruska, J., and Thurn, H., Inorg. Chem. 15, 991 (1976).CrossRefGoogle Scholar
40.Lucovsky, G., Nemanich, R. J., and Galeener, F. L., Proc. 7th Int. Conf. Amorph. Liq. Semicond., Edinburgh, 1977, edited by Spear, W. E. (Univ. Edinburgh, Cent. Ind. Consultancy Liaison, Edinburgh, Scotland, 1977), p. 130.Google Scholar
41.Glazov, V. M. and Situlina, O. V., Dokl. Akad. Nauk SSSR 187, 799 (1969).Google Scholar
42.Tasumisago, M., Halfpap, B. L., Green, J. L., Lindsay, S. M., and Angel, C. A., Phys. Rev. Lett. 64, 1549 (1990).CrossRefGoogle Scholar