Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T21:33:28.517Z Has data issue: false hasContentIssue false

Grain growth and the microstructural effects on the properties of YBa2Cu3O7−y superconductor

Published online by Cambridge University Press:  31 January 2011

C. T. Chu
Affiliation:
Department of Materials Science and Engineering, Solid State Science Center, University of California-Los Angeles, Los Angeles, California 90024
B. Dunn
Affiliation:
Department of Materials Science and Engineering, Solid State Science Center, University of California-Los Angeles, Los Angeles, California 90024
Get access

Abstract

The microstructural development and grain growth of YBa2Cu3O7−y ceramics at 925, 950, and 975 °C were studied. Densification occurred quite rapidly at temperatures below 925 °C. The grain growth of YBa2Cu3O7−y followed a D5D50 = Kt relation when sintered at 925 and 950 °C. At 975 °C, the kinetics changed to cubic (D3) behavior, which can be attributed to the formation of a liquid phase at grain boundaries. A trend of decreasing Jc with increasing sintering temperature was observed. Other properties including Tc and the width of the transition were virtually unaffected by the change in microstructure. Without prolonged annealing, a relatively homogeneous oxygen stoichiometry of 6.8 was obtained for fairly dense samples (>93% of theoretical). These results suggest that the oxygenation rate of YBa2Cu3O7−y was quite rapid between the tetragonal phase and the orthorhombic composition of YBa2Cu3O6.8.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yan, M. F., Ling, H. C., O'Bryan, H. M., Gallagher, P. K., and Rhodes, W. W., Mater. Sci. Engr. Bl, 119129 (1988).CrossRefGoogle Scholar
2Clarke, D. R., Shaw, T. M., and Dimos, D., J. Am. Ceram. Soc. 72 (7), 11031113 (1989).CrossRefGoogle Scholar
3Blendell, J. E., Chiang, C. K., Cranmer, D. C., Freiman, S. W., Fuller, E. R., Drescher-Krasicka, E., Johnson, W. L., Ledbetter, H. M., Bennett, L. H., Swartzendruber, L. J., Marinenko, R. B., Myklebust, R. L., Bright, D. S., and Newbury, D. E., Adv. Ceram. Mater. 2 (3B), 512529 (1987).CrossRefGoogle Scholar
4Cook, R. F., Shaw, T. M., and Duncombe, P. R., Adv. Ceram. Mater. 2 (3B), 606614 (1987).CrossRefGoogle Scholar
5Yamamoto, T., Furusawa, T., Seto, H., Park, K. H., Hasegawa, T., Kishio, K., Kitazawa, K., and Fueki, K., Supercond. Sci. Technol. 1, 153159 (1988).CrossRefGoogle Scholar
6Tien, J. K., Borofka, J. C., Hendrix, B. C., Caulfield, T., and Reichman, S. H., Metall. Trans. A 19A, 18411847 (1988).CrossRefGoogle Scholar
7Alford, N. Mc N., Clegg, W. J., Harmer, M. A., Birchall, J. D., Kendall, K., and Jones, D. H., Nature 332, 5859 (1988).CrossRefGoogle Scholar
8Ekin, J. W., Adv. Ceram. Mater. 2 (3B), 586592 (1987).CrossRefGoogle Scholar
9Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248256 (1989).CrossRefGoogle Scholar
10Chu, C. T. and Dunn, B., J. Am. Ceram. Soc. 70 (12), C375–C377 (1987).CrossRefGoogle Scholar
11 ASTM Standard E112–85, 1988 Annual Book of ASTM Standards 03.01, 277 (1988).Google Scholar
12Cooper, J. R., Chu, C. T., Zhou, L. W., Dunn, B., and Gruner, G., Phys. Rev. B 37 (1), 638641 (1988).CrossRefGoogle Scholar
13Harris, D. C. and Hewston, T. A., J. Solid State Chem. 69, 182185 (1987).CrossRefGoogle Scholar
14Greskovich, C. and Lay, K. W., J. Am. Ceram. Soc. 55 (3), 142146 (1972).CrossRefGoogle Scholar
15Burke, J. E. and Turnbull, D., Prog. Metal. Phys. 3, 220 (1952).CrossRefGoogle Scholar
16Lay, K. W., in Materials Science Research, Vol. 16–Sintering and Related Phenomena, edited by Kuczynski, G. C. (Plenum Press, New York, 1973), p. 65.Google Scholar
17Kingery, W. D. and Francois, B., J. Am. Ceram. Soc. 48 (10), 546547 (1965).CrossRefGoogle Scholar
18Nichols, F. A., J. Appl. Phys. 37 (13), 45994602 (1966).CrossRefGoogle Scholar
19Mocellin, A. and Kingery, W. D., J. Am. Ceram. Soc. 56 (6), 309314 (1973)CrossRefGoogle Scholar
20Zikovsky, L., Vagnard, G., and Daniel, J. S., J. Am. Ceram. Soc. 55 (3), 134136 (1972).CrossRefGoogle Scholar
21Brook, R. J., in Ceramic Fabrication Processes, edited by Wang, F. F (Academic Press, New York, 1976), p. 331.Google Scholar
22McCallum, R. W., Verhoeven, J. D., Noack, M. A., Gibson, E. D., Laabs, F. C., and Finnemore, D. K., Adv. Ceram. Mater. 2 (3B), 388400 (1987).CrossRefGoogle Scholar
23Lay, K. W., J. Am. Ceram. Soc. 51 (7), 373376 (1968).CrossRefGoogle Scholar
24Jain, G. C., Das, B. K., and Goel, N. C., J. Am. Ceram. Soc. 62 (1–2), 7985 (1979).CrossRefGoogle Scholar
25Chermant, J. L., Coster, M., and Mordike, B. L., in Sintering—New Developments, edited by Ristic, M. M. (Elsevier Scientific Publishing Co., The Netherlands, 1979), p. 319.Google Scholar
26Tu, K. N., Yeh, N. C., Park, S. I., and Tsuei, C. C., Phys. Rev. B 39, 304314 (1989).CrossRefGoogle Scholar