Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:11:28.210Z Has data issue: false hasContentIssue false

Hg–Ba–Ca–Cu–O system phase diagram and the formation of HgBa2Can−1CunO2n+2+δ superconducting phases

Published online by Cambridge University Press:  03 March 2011

G.C. Che
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Academia Sinica, Beijing 100080, People's Republic of China
Y.K. Du
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Academia Sinica, Beijing 100080, People's Republic of China
C. Dong
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Academia Sinica, Beijing 100080, People's Republic of China
F. Wu
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Academia Sinica, Beijing 100080, People's Republic of China
Z.X. Zhao
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Academia Sinica, Beijing 100080, People's Republic of China
Get access

Abstract

The Hg-Ba-Ca-Cu-O system phase diagram and the formation of HgBa2Can-1CunO2n+2+δ superconducting phases have been investigated by XRD (x-ray diffraction). The isothermal sections of the HgO-BaO-CuO system at 800 °C and the BaO-CaO-CuO system at 870 °C are presented. HgBa2Can-1CunO2n+2+δ superconducting phases are formed through the reactions of HgO with intermediate products Ba2CuO3 + BaCuO2 + CaO, BaCuO2 + CaO2, and BaCuO2 + Ca2CuO3 for n = 1, 2, and 3 phases, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Putilin, S. N., Antipov, E. V., Chmaissen, O., and Marezio, M., Nature (London) 362, 226 (1993).CrossRefGoogle Scholar
2Schilling, A., Cautoni, M., Gou, J. D., and Ott, H. R., Nature (London) 363, 56 (1993).CrossRefGoogle Scholar
3Gao, L., Huang, Z. J., Meng, R. L., Lin, J. G., Chen, F., Beauvais, L., Sun, Y. Y., Xue, Y. Y., and Chu, C. W., Physica C 213, 261 (1993).CrossRefGoogle Scholar
4Zhu, W. J., Huang, Y. Z., Chen, L. Q., Dong, C., Yin, B., and Zhao, Z. X., Physica C 218, 5 (1993).CrossRefGoogle Scholar
5Radaelli, P. G., Wagner, J. L., Hunter, B. A., Beno, M. A., Knapp, G. S., Jorgensen, J. D., and Hinks, D. G., Physica C 216, 29 (1993).CrossRefGoogle Scholar
6Loureiro, S. M., Antipov, E. V., Tholnke, J. L., Capponi, T. T., Chmaissen, O., Huang, Q., and Marezio, M., Physica C 217, 253 (1993).CrossRefGoogle Scholar
7Paranthama, M., Thompson, J. R., Sun, Y. R., and Brynestad, J., Physica C 213, 271 (1993).CrossRefGoogle Scholar
8Klehe, A. K., Gangophdhy, A. K., Dederichs, J., and Schilling, J. S., Physica C 213, 266 (1993).CrossRefGoogle Scholar
9Zhang, W., Osamura, K., and Ochiai, S., J. Am. Ceram. Soc. 73(7), 1958 (1990).CrossRefGoogle Scholar
10Battista, F., Vallino, M., Brissi, C., and Lusso-Borlera, M., Mater. Res. Bull. 23, 1509 (1988).CrossRefGoogle Scholar
11B-J., and Lee, D. N., J. Am. Ceram. Soc. 72(2), 314 (1989).Google Scholar
12Kreidler, E. R., J. Am. Ceram. Soc. 55(10), 414 (1972).CrossRefGoogle Scholar
13Kwestroo, W., Langereis, C., and Nabben, H., Mater. Res. Bull. 17(5), 641 (1982).CrossRefGoogle Scholar
14Gadalla, A. M. M. and White, J., Trans. Br. Ceram. Soc. 65(4), 181 (1966).Google Scholar
15Roth, R. S., Jrawn, C., Ritter, J. J., and Purton, B. P., J. Am. Ceram. Soc. 72(8), 1545 (1989).CrossRefGoogle Scholar
16Teske, C. L. and Muller-Bushbaum, H., Z. Anorg. Allg. Chem. 370, 134 (1969).CrossRefGoogle Scholar
17JCPDS card No. 34-284.Google Scholar