Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:23:00.419Z Has data issue: false hasContentIssue false

High Rate in situ YBa2Cu3O7 Film Growth Assisted by Liquid Phase

Published online by Cambridge University Press:  03 March 2011

T. Ohnishi
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305-4045
J-U. Huh
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305-4045
R.H. Hammond
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305-4045
W. Jo
Affiliation:
Department of Physics and Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Korea
Get access

Abstract

High-rate (10 nm/s) in situ YBa2Cu3O7 (YBCO) film growth was demonstrated by molecular beam epitaxy with electron beam co-evaporation at a system pressure of approximately 5 × 10-5 Torr. To explain the phase stability observed, it is suggested that activated oxygen is generated in the process. Growth of very good YBCO, with a Jc of more than 2 MA/cm2, is possible at this very high rate because the growth is in a liquid (Ba–Cu–O), which forms along with the YBCO epitaxy. This liquid seems essential for high Jc-YBCO film growth at very high in situ growth rates and may be essential for all high-rate processes, including postanneal ex situ processes.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peng, L.S-J., Wang, W., Jo, W., Ohnishi, T., Marshall, A.F., Hammond, R.H., Beasley, M.R. and Peterson, E.J.: IEEE Trans. Appl. Supercond. 11, 3375 (2001).CrossRefGoogle Scholar
2Jo, W., Peng, L.S-J., Wang, W., Ohnishi, T., Marshall, A.F., Hammond, R.H., Beasley, M.R. and Peterson, E.J.: J. Cryst. Growth. 225, 183 (2001).CrossRefGoogle Scholar
3Wang, W., Hammond, R.H., Fejer, M.M. and Beasley, M.R.: J. Vac. Sci. Technol. A17, 2676 (1999).CrossRefGoogle Scholar
4Jo, W., Ohnishi, T., Huh, J., Hammond, R.H. and Beasley, M.R.: IEEE Trans. Appl. Supercond. (in press).Google Scholar
5Williams, R.K., Alexander, K.B., Brynestad, J., Henson, T.J., Kroeger, D.M., Lindemer, T.B., Marsh, G.C., Scarbrough, J.O. and Specht, E.D.: J. Appl. Phys. 67, 6934 (1990).CrossRefGoogle Scholar
6Williams, R.K., Alexander, K.B., Brynestad, J., Henson, T.J., Kroeger, D.M., Lindemer, T.B., Marsh, G.C., Scarbrough, J.O. and Specht, E.D.: J. Appl. Phys. 70, 906 (1991).CrossRefGoogle Scholar
7Lindemer, T.B., Washburn, F.A., MacDougal, C.S., Feenstra, R. and Cavin, O.B.: Physica C. 178, 93 (1991).CrossRefGoogle Scholar
8MacManus-Driscoll, J.L., Bravman, J.C. and Beyers, R.B.: Physica C. 241, 401 (1995).CrossRefGoogle Scholar
9Lindermer, T.B. and Specht, E.D.: Physica C. 255, 81 (1995).CrossRefGoogle Scholar
10Wong-Ng, W. and Cook, L.P.: NIST. 103, 379 (1998).CrossRefGoogle Scholar
11Shiohara, Y. and Goodilin, E.A. Single Crystal Growth for Science and Technology, in High Temperature Rare Earths Superconductors - I, Handbook on the Physics and Chemistry of Rare Earths, 30, edited by Gschneidner, K.A. Jr., Eyring, L., and Maple, M.B. (2000), Chapter 189, pp. 67227Google Scholar
12Yun, K.S., Choi, B.D., Matsumoto, Y., Song, J.H., Kanda, N., Ito, T., Kawasaki, M., Chikyow, T., Ahmet, P. and Koinuma, H.: Appl. Phys. Lett. 80, 61 (2002).CrossRefGoogle Scholar
13Ahn, B.T., Lee, V.Y., Beyers, R., Gur, T.M. and Huggins, R.A.: Physica C. 167, 529 (1990).CrossRefGoogle Scholar
14Beyers, R. and Ahn, B.T.: Annu. Rev. Mater. Sci. 21, 335 (1991).CrossRefGoogle Scholar
15Wong-Ng, W., Cook, L.P., Suh, J., Levin, I., Vaudin, M., Feenstra, R. and Cline, J.P. in Materials for High-Temperature Superconductor Technologies, edited by Paranthaman, M.P., Rupich, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2002), p. 337.Google Scholar
16 J.L. MacManus-Driscoll: (private communication).Google Scholar
17MacManus-Driscoll, J.L.: Adv. Mater. 9, 457 (1997).CrossRefGoogle Scholar
18 R.H. Hammond: in Advances in Superconductivity VIII, Proc. 8th Int. Symp. Supercond. (ISS) (Springer, Hamamatsu, 1996), pp. 10291034.CrossRefGoogle Scholar
19Berenov, A., Malde, N., Bugoslavsky, Y., Cohen, L.F., Foltyn, S.J., Dowden, P., Ramirez-Castellanos, J., Gonzalez-Calbet, J.M., Vallet-Regi, M. and MacManus-Driscoll, J.L.: J. Mater. Res. 18, 956 (2003).CrossRefGoogle Scholar
20 A. Ignatiev: (private communication).Google Scholar
21 M. Cima: Mater. Res. Soc. Fall 2002 presentation.Google Scholar