Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T15:52:29.540Z Has data issue: false hasContentIssue false

High resolution electron microscopy of Al-Cu-Fe quasicrystals: Atomic structure and modeling

Published online by Cambridge University Press:  18 February 2016

William Krakow
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
David P. DiVincenzo
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Peter A. Bancel
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Eric Cockayne
Affiliation:
Department of Physics, Cornell University, Ithaca, New York 14853
Veit Elser
Affiliation:
Department of Physics, Cornell University, Ithaca, New York 14853
Get access

Extract

High quality Al-Cu-Fe quasicrystals have been studied at the atomic level with a high resolution microscope operating at 400 kV. When the incident beam is parallel to the fivefold axis, experimental bright-field images in thin regions of the specimen are found to be of two types, depending on the electron optical parameters employed. One of these images is of greater contrast than the other, but both types yield decagon-like image features. Close agreement is found between both types of contrast-enhanced micrographs and microscope image simulations of a realistic atomic model. This model involves the placement of overlapping Mackay icosahedra on a perfect quasicrystalline network. The limitation of resolving the projected atomic structure is discussed in terms of the contribution of different diffraction orders, considerations of specimen thickness, and optimal adjustment of the microscope objective lens defocus. A similar treatment is also applied to the threefold orientation where micrographs were taken under coherent imaging conditions. For the threefold pattern, fine modulations of the quasicrystalline lattice are obtained which are not observed under less coherent conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53 (20), 1951–1953 (1984).Google Scholar
2. Hiraga, K., Hirabayashi, M., Inoue, A., and Matsumoto, T., J. Phys. Soc. Jpn. 54 (11), 40774080 (1985).CrossRefGoogle Scholar
3. Hiraga, K., Hirabayashi, M., Inoue, A., and Matsumoto, T., J. Microsc. 146, Pt. 3, 245–260 (1987).Google Scholar
4. Hiraga, K., JEOL News 25E (1), 812 (1987).Google Scholar
5. Tsai, A-P., Inoue, A., and Matsumoto, T., Jpn. J. Appl. Phys. 26 (9), L15051507 (1987).CrossRefGoogle Scholar
6. Hiraga, K., Zhang, B-P., Hirabayashi, M., Inoue, A., and Matsumoto, T., Jpn. J. Appl. Phys. 27 (6), L951953 (1988).Google Scholar
7. Ishimasa, T., Fukano, Y., and Tsuchimori, M., Philos. Mag. Lett. 58 (3), 157165 (1988).CrossRefGoogle Scholar
8. Hiraga, K. and Shindo, D., Mater. Trans., JIM 31 (7), 567572 (1990).Google Scholar
9. Hiraga, K., in Quasicrystals: The State of the Art, edited by DiVincenzo, D.P. and Steinhardt, P. J. (World Scientific, Singapore, 1991), pp. 95110.Google Scholar
10. Bancel, P. A., Phys. Rev. Lett. 63 (25), 27412744 (1989).Google Scholar
11. Onoda, G.Y., Steinhardt, P.J., DiVincenzo, D.P., and Socolar, J.E.S., Phys. Rev. Lett. 60 (25), 26532656 (1988).CrossRefGoogle Scholar
12. Bendersky, L.A., Cahn, J.W., and Gratias, D., in Quasicrystals and Incommensurate Structures in Condensed Matter, edited by Yacaman, M. J., Romeu, D., Castano, V., and Gomez, A. (World Scientific, Singapore, 1990), pp. 337355.Google Scholar
13. Krakow, W., J. Electron Microsc. Technique 1, 107130 (1984).CrossRefGoogle Scholar
14. Elser, V., in Extended Icosahedral Structures, edited by Jaric, M. V. and Gratias, D. (Academic Press, 1989), pp. 105136.CrossRefGoogle Scholar
15. Elser, V. and Henley, C.L., Phys. Rev. Lett. 55, 197210 (1985).Google Scholar
16. Bancel, P. A., in Quasicrystals: The State of the Art, edited by DiVincenzo, D. P. and Steinhardt, P.J. (World Scientific, Singapore, 1991), pp. 1756.CrossRefGoogle Scholar
17. Henley, C.L., Phys. Rev. B 43, 9931020 (1991).Google Scholar
18. Henley, C. L., private communication.Google Scholar
19. Burkov, S.E., Phys. Rev. Lett. 67, 614617 (1991).CrossRefGoogle Scholar
20. Ebalard, S. and Spaepen, F., J. Mater. Res. 4, 3943 (1989).CrossRefGoogle Scholar
21. Elser, V., Acta Crystallogr. A42, 3643 (1986).Google Scholar
22. Cornier-Quiquandon, M., Quivy, A., Lefebvre, S., Eliakim, E., Heger, G., Katz, A., and Gratias, D., Phys. Rev. B 44, 20712084 (1991).Google Scholar
23. Krakow, W., Ultramicrosc. 18, 197210 (1985).CrossRefGoogle Scholar
24. Krakow, W., in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by Broughton, J., Krakow, W., and Pantelides, S. T. (Mater. Res. Soc. Symp. Proc. 63, Pittsburgh, PA, 1986), pp. 4354.Google Scholar
25. Krakow, W., J. Electron Microsc. Technique 19, 366378 (1991).CrossRefGoogle Scholar
26. Tsai, A. P., Inoue, A., and Matsumoto, T., Jpn. J. Appl. Phys. 27 (9), L15871590 (1988).CrossRefGoogle Scholar
27. Hiraga, K., Hirabayashi, M., Tsai, A. P., Inoue, A., and Matsumoto, T., Philos. Mag. Lett. 60, 201205 (1989).CrossRefGoogle Scholar