Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T04:14:47.187Z Has data issue: false hasContentIssue false

High temperature x-ray and calorimetric studies of phase transformations in quasicrystalline Ti–Zr–Ni alloys

Published online by Cambridge University Press:  31 January 2011

R. M. Stroud
Affiliation:
Physics Department, Washington University, St. Louis, Missouri 63130
K. F. Kelton
Affiliation:
Physics Department, Washington University, St. Louis, Missouri 63130
S. T. Misture
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

We present the first high temperature x-ray diffraction (HTXRD) studies of in situ quasicrystal-crystal and crystal-crystal transformations in Ti–Zr–Ni alloys. Together with differential scanning calorimetry studies, these x-ray measurements indicate three separate paths for the Ti–Zr–Ni quasicrystal-crystal transformation: single exothermic, single endothermic, or multiple endothermic. The mode of transformation depends on the alloy composition and the level of environmental oxygen. The crystalline products include the Ti2Ni, MgZn2 Laves, α−(Ti, Zr), and β−(Ti, Zr) phases. In the absence of oxygen, the endothermic transformation of the quasicrystal demonstrates that it is the lowest free energy (stable) phase at the Ti53Zr27Ni20 composition. Oxygen stabilizes the Ti2Ni phase, eliminating both the quasicrystal and the MgZn2 Laves phase, at partial pressures as low as a few hundred ppm.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gao, Y-Q., Lo, Y-B., Yang, X-Q., Li, S-L., and Gao, Y-S., Int. J. Rapid Solid 6, 231 (1991).Google Scholar
2.Sibirtsev, S. A., Chebotnikov, V. N., Molokanov, V. V., and Kövneristyi, Y. K., JETP Lett. 47, 744 (1988).Google Scholar
3.Molokanov, V. V. and Chebotnikov, V. N., J. Non-Cryst. Solids 117/118, 789 (1990).CrossRefGoogle Scholar
4.Zhang, X., Stroud, R. M., Libbert, J. L., and Kelton, K. F., Philos. Mag. B 70, 927 (1994).CrossRefGoogle Scholar
5.Stroud, R. M. and Kelton, K. F., in Proceedings of Fifth International Conference on Quasicrystals, edited by Janot, C. and Mosseri, R. (World Scientific, Amsterdam, 1995).Google Scholar
6.Viano, A. M., Stroud, R. M., Gibbons, P. C., McDowell, A. F., Conradi, M. S., and Kelton, K. F., Phys. Rev. B 51, 12 026 (1995).CrossRefGoogle Scholar
7.Stroud, R. M., Viano, A. M., Majzoub, E. H., Gibbons, P. C., and Kelton, K. F., in Metastable Metal-Based Phases and Microstructures, edited by Bormann, R., Mazzone, G., Averback, R. S., Shull, R. D., and Ziolo, R. F. (Mater. Res. Soc. Symp. Proc. 400, Pittsburgh, PA, 1996).Google Scholar
8.Semenenko, K. N., Verbetskii, V. N., Mitrokhin, S. V., and Burnasheva, V. V., Russ. J. Inorg. Chem. 25, 1731 (1980).Google Scholar
9.Yang, H. W., Wang, Y. Y., and Wan, C. C., J. Electrochem. Soc. 143, 429 (1996).CrossRefGoogle Scholar
10.Busch, R., Kim, Y. J., and Johnson, W. L., Appl. Phys. Lett. 66, 3111 (1995).CrossRefGoogle Scholar
11.Maisner, L. L., Sivekha, V. P., and Grishkov, V. N., Russ. Phys. J. 38, 251 (1995).CrossRefGoogle Scholar
12.Eremenko, V. N., Semenova, E. L., and Tret'yachenko, L. A., Metally, 138 (1992).Google Scholar
13. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
14.Thermophysical Properties of Matter, Thermal Expansion, edited by Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P. D. (IFI/Plenum, New York, 1977), Vol. 12, p. 154.Google Scholar
15.Holzer, J. C. and Kelton, K. F., in Crystal-Quasicrystal Transitions, edited by Yacaman, M. J. and Torres, M. (Elsevier, Amsterdam, 1993), pp. 103142.Google Scholar
16.Libbert, J. L., Kelton, K. F., Goldman, A. I., and Yelon, W. B., Phys. Rev. B 49, 11 675 (1994).CrossRefGoogle Scholar