Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:52:12.708Z Has data issue: false hasContentIssue false

A highly sensitive co-resonant cantilever sensor for materials research: Application to nanomaterial characterization

Published online by Cambridge University Press:  14 September 2018

Julia Körner*
Affiliation:
Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
*
a)Address all correspondence to this author. e-mail: julia.koerner2k@gmail.com
Get access

Abstract

Dynamic-mode cantilever sensors are used in many different applications but especially in materials research to study properties of novel (nano)materials. Decreasing sample sizes require an increase in sensitivity of the analysis tools. For cantilever-based methods that is achieved through a reduction in cantilever dimensions. However, the increase in sensitivity has to be balanced with the detectability as also for a small cantilever a reliable detection of its oscillatory state has to be ensured. A recently introduced co-resonant measurement principle for cantilever sensors addresses this challenge by coupling and eigenfrequency matching of a micro- and a nanocantilever. Here, the sensor concept is reviewed with focus on the application in materials research by the instructive example of an iron-filled carbon nanotube, giving insight into the features and benefits of the sensor concept and demonstrating the reliable derivation of magnetic sample properties.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gfeller, K.Y., Nugaeva, N., and Hegner, M.: Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics 21, 528 (2005).CrossRefGoogle ScholarPubMed
Martínez-Martín, D., Fläschner, G., Gaub, B., Martin, S., Newton, R., Beerli, C., Mercer, J., Gerber, C., and Müller, D.J.: Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500 (2017).CrossRefGoogle ScholarPubMed
Johnson, B.N. and Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics 32, 1 (2012).CrossRefGoogle ScholarPubMed
Baller, M.K., Lang, H.P., Fritz, J., Gerber, C., Gimzewski, J.K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F.M., Ramseyer, J.P., Fornardo, P., Meyer, E., and Güntherodt, H-J.: A cantilever array-based artificial nose. Ultramicroscopy 82, 1 (2000).CrossRefGoogle ScholarPubMed
Gross, B., Weber, D.P., Rffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., and Poggio, M.: Dynamic cantilever magnetometry of individual CoFeB nanotubes. Phys. Rev. B 93, 064409 (2016).CrossRefGoogle Scholar
Gysin, U., Rast, S., Aste, A., Speliotis, T., Werle, C., and Meyer, E.: Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry. Nanotechnology 22, 285715 (2011).CrossRefGoogle ScholarPubMed
Körner, J., Reiche, C.F., Ghunaim, R., Fuge, R., Hampel, S., Büchner, B., and Mühl, T.: Magnetic properties of individual Co2FeGa Heusler nanoparticles studied at room temperature by a highly sensitive co-resonant cantilever sensor. Sci. Rep. 7, 8881 (2017).CrossRefGoogle ScholarPubMed
Binnig, G., Quate, C.F., and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle ScholarPubMed
Rossel, C., Bauer, P., Zech, D., Hofer, J., and Willemin, M.: Active microlevers as miniature torque magnetometers. J. Appl. Phys. 79, 8166 (1996).CrossRefGoogle Scholar
Martín-Hernández, F., Bominaar-Silkens, I.M., Dekkers, M.J., and Maan, J.K.: High-field cantilever magnetometry as a tool for the determination of the magnetocrystalline anisotropy of single crystals. Tectonophysics 418, 21 (2005).CrossRefGoogle Scholar
Löhndorf, M., Moreland, J., Kabos, P., and Rizzo, N.: Microcantilever torque magnetometry of thin magnetic films. J. Appl. Phys. 87, 5995 (2000).CrossRefGoogle Scholar
Höpfl, T., Sander, D., Höche, H., and Kirschner, J.: Ultrahigh vacuum cantilever magnetometry with standard size single crystal substrates. Rev. Sci. Instrum. 72, 1495 (2001).CrossRefGoogle Scholar
Harris, J.G.E., Awschalom, D.D., Matsukura, F., Ohno, H., Maranowski, K.D., and Gossard, A.C.: Integrated micromechanical cantilever magnetometry of Ga1−xMnxAs. Appl. Phys. Lett. 75, 1140 (1999).CrossRefGoogle Scholar
Buchter, A., Nagel, J., Rüeffer, D., Xue, F., Weber, P.D., Kieler, O.F., Weinmann, T., Kohlmann, J., Zorin, A.B., Russo-Averchi, E., Huber, R., Berberich, P., Fontcuberta i Morral, A., Kemmler, M., Kleiner, R., Koelle, D., Grundler, D., and Poggio, M.: Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry. Phys. Rev. Lett. 111, 067202 (2013).CrossRefGoogle ScholarPubMed
Weber, D.P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Fontcuberta i Morral, A., Grundler, D., and Poggio, M.: Cantilever magnetometry of individual Ni nanotubes. Nano Lett. 12, 6139 (2012).CrossRefGoogle ScholarPubMed
Tosolini, G., Michalik, J.M., Córdoba, R., de Teresa, J.M., Pérez-Murano, F., and Bausells, J.: Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry. Nanofabrication 1, 80 (2014).CrossRefGoogle Scholar
Banerjee, P., Wolny, F., Pelekhov, D.V., Herman, M.R., Fong, K.C., Weissker, U., Mühl, T., Obukhov, Y., Leonhardt, A., Büchner, B., and Hammel, C.: Magnetization reversal in an individual 25 nm iron-filled carbon nanotube. Appl. Phys. Lett. 96, 252505 (2010).CrossRefGoogle Scholar
Giessibl, F.J., Pielmeier, F., Eguchi, T., An, T., and Hasegawa, Y.: Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 125409 (2011).CrossRefGoogle Scholar
Ilic, B., Yang, Y., and Craighead, H.G.: Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85, 2604 (2004).CrossRefGoogle Scholar
Li, M., Tang, X., and Roukes, M.L.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114 (2007).CrossRefGoogle ScholarPubMed
Gil-Santos, E., Ramos, D., Martinez, J., Fernandez-Regulez, M., Garcia, R., San Paulo, A., Calleja, M., and Tamayo, J.: Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotechnol. 5, 641 (2010).CrossRefGoogle ScholarPubMed
Nichol, J.M., Hemesath, E.R., Lauhin, L.J., and Budakian, R.: Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry. Appl. Phys. Lett. 93, 193110 (2008).CrossRefGoogle Scholar
Lochon, F., Dufour, I., and Rebiére, D.: An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: Comparison between using high-order modes and reducing dimensions. Sens. Actuators, B 108, 979 (2005).CrossRefGoogle Scholar
Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., and Rugar, D.: Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117 (2000).CrossRefGoogle Scholar
Reiche, C.F., Körner, J., Büchner, B., and Mühl, T.: Introduction of a co-resonant detection concept for mechanical oscillation-based sensors. Nanotechnology 26, 335501 (2015).CrossRefGoogle ScholarPubMed
Körner, J., Reiche, C.F., Büchner, B., Gerlach, G., and Mühl, T.: Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor. Beilstein J. Nanotechnol. 7, 1033 (2016).CrossRefGoogle ScholarPubMed
Lipert, K., Bahr, S., Wolny, F., Atkinson, P., Weissker, U., Mühl, T., Schmidt, O.G., Büchner, B., and Klingeler, R.: An individual iron nanowire-filled carbon nanotube probed by micro-hall magnetometry. Appl. Phys. Lett. 97, 212503 (2010).CrossRefGoogle Scholar
Wolny, F., Mühl, T., Weissker, U., Lipert, K., Schumann, J., Leonhardt, A., and Büchner, B.: Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21, 435501 (2010).CrossRefGoogle ScholarPubMed
Wolny, F., Obukhov, Y., Mühl, T., Weissker, U., Philippi, S., Leonhardt, A., Banerjee, P., Reed, A., Xiang, G., Adur, R., Lee, I., Hauser, A.J., Yang, A.J., Pelekhov, D.V., Büchner, B., and Hammel, P.C.: Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe. Ultramicroscopy 111, 1360 (2011).CrossRefGoogle ScholarPubMed
Philippi, S., Weissker, U., Mühl, T., Leonhardt, A., and Büchner, B.: Room temperature magnetometry of an individual iron filled carbon nanotube acting as nanocantilever. J. Appl. Phys. 110, 084319 (2011).CrossRefGoogle Scholar
Rossing, T.D. and Fletcher, N.H.: Principles of Vibration and Sound, 2nd ed. (Springer-Verlag, Berlin Heidelberg, 2004).CrossRefGoogle Scholar
Reiche, C.F., Körner, J., Büchner, B., and Mühl, T.: Bidirectional scanning force microscopy probes with co-resonant sensitivity enhancement. In Proceedings of IEEE 15th International Conference on Nanotechnology (IEEE, Italy, 2015); p. 1222.Google Scholar
Rast, S., Wattinger, C., Gysin, U., and Meyer, E.: Dynamics of damped cantilevers. Rev. Sci. Instrum. 71, 2772 (2000).CrossRefGoogle Scholar
Körner, J., Reiche, C.F., Büchner, B., Mühl, T., and Gerlach, G.: Employing electro-mechanical analogies for co-resonantly coupled cantilever sensors. J. Sens. Sens. Syst. 5, 242 (2016).CrossRefGoogle Scholar
Körner, J.: Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor. Beilstein J. Nanotechnol. (2018). (in press).Google Scholar
Körner, J.: Effective sensor properties of a novel co-resonant cantilever sensor. In Proceedings Eurosensors (MDPI, Graz, Austria, 2018).Google Scholar
Blanter, M.S., Golovin, I.S., Neuhäuser, H., and Sinning, H-R.: Internal Friction in Metallic Materials—A Handbook, 1st ed. (Springer, Berlin, Heidelberg, 2007).Google Scholar
Körner, J., Reiche, C.F., Büchner, B., and Mühl, T.: Theory and application of a novel co-resonant cantilever sensor. TM – Tech. Mess. 85, 410 (2018).CrossRefGoogle Scholar
Informations about the Simulation Software Finite Element Method Magnetics—FEMM (2014). Available at: http://www.femm.info/wiki/HomePage (accessed May, 2018).Google Scholar
Stoner, E.C. and Wohlfarth, E.P.: Mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475 (1991).CrossRefGoogle Scholar
Lutz, M.U., Weissker, U., Wolny, F., Müller, C., Löffler, M., Mühl, T., Leonhardt, A., Büchner, B., and Klingeler, R.: Magnetic properties of α-Fe and Fe3C nanowires. J. Phys.: Conf. Ser. 200, 072062 (2010).Google Scholar
Stipe, B.C., Mamin, H.J., Stowe, T.D., Kenny, T.W., and Rugar, D.: Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett. 86, 2874 (2001).CrossRefGoogle ScholarPubMed
Weber, D.P.: Dynamic Cantilever Magnetometry of Individual Ferromagnetic Nanotubes. Ph.D. thesis, Universität Basel, Fakultät für Naturwissenschaften (Basel, Switzerland, 2014).Google Scholar
Sidles, J.A., Garbini, J.L., Bruland, K.J., Rugar, D., Züger, O., Hoen, S., and Yannoni, C.S.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995).CrossRefGoogle Scholar
Körner, J.: Gekoppelte Oszillatoren als neuartige Sensoren für Cantilever-Magnetometrie. Ph.D. thesis, Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, (Dresden, Germany, 2016).Google Scholar
Chikazumi, S.: Physics of Magnetism (John Wiley and Sons, London, Sydney, 1964).Google Scholar
Reiche, C.F., Vock, S., Neu, V., Schultz, L., Büchner, B., and Mühl, T.: Bidirectional quantitative force gradient microscopy. New J. Phys. 17, 013014 (2015).CrossRefGoogle Scholar