Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T02:35:36.207Z Has data issue: false hasContentIssue false

High-pressure and high-temperature sintering of nanostructured bulk NiAl materials

Published online by Cambridge University Press:  31 January 2011

Duanwei He*
Affiliation:
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
Zili Kou
Affiliation:
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
*
a) Address all correspondence to this author. e-mail: duanweihe@yahoo.com
Get access

Abstract

Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gschneidner, K. Jr, Russell, A., Pecharsky, A., Morris, J., Zhang, Z.H., Lograsso, T.,Hsu, D., Lo, C.H.C., Ye, Y.Y., Slager, A., and Kesse, D.: A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003)CrossRefGoogle ScholarPubMed
2Nakamura, R., Fujita, K., Iijima, Y., and Okada, M.: Diffusion mechanisms in B2 NiAl phase studied by experiments on Kirkendall effect and interdiffusion under high pressures. Acta Mater. 51, 3861 (2003)CrossRefGoogle Scholar
3Li, C.M., Lei, H., Tang, Y.J., Luo, J.S., Liu, W., and Chen, Z.M.: Production of copper nanoparticles by the flow-levitation method. Nanotechnology 15, 1866 (2004)CrossRefGoogle Scholar
4Coble, R.L.: Sintering crystalline solid. J. Appl. Phys. 32, 787 (1961)Google Scholar
5Cameron, C.P. and Raj, R.: Grain-growth transition during sintering of colloidally prepared alumina powder compacts. J. Am. Ceram. Soc. 71, 1031 (1988)Google Scholar
6Chen, I.W. and Wang, X.H.: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168 (2000)CrossRefGoogle ScholarPubMed
7Liao, S.C., Pae, K.D., and Mayo, W.E.: High pressure and low temperature sintering of bulk nanocrystalline TiO2. Mater. Sci. Eng., A 204, 152 (1995)Google Scholar
8Liao, S.C., Chen, Y.J., Kear, B.H., and Mayo, W.E.: High pressure/ low temperature sintering of nanocrystalline alumina. Nanostruct. Mater. 10, 1063 (1998)Google Scholar
9Palosz, B., Stelmakh, S., Grzanka, E., Gierlotka, S., Pielaszek, R., Bismayer, U., Werner, S., and Palosz, W.: High pressure x-ray diffraction studies on nanocrystalline materials. J. Phys.: Condens. Matter 16, S353 (2004).Google Scholar
10Palosz, B., Stelmakh, S., Grzanka, E., Gierlotka, S., Nauyoks, S., Zerda, T.W., and Palosz, W.: Origin of macrostrains and micro-strains in diamond-SiC nanocomposites based on the core-shell model. J. Appl. Phys. 102, 074303 (2007)Google Scholar
11Padmanabhan, K.A.: Mechanical properties of nanostructured materials. Mater. Sci. Eng., A 304-306, 200 (2001)Google Scholar
12Zhao, Y.S., Zhang, J.Z., Clausen, B., Shen, T.D., Gray, G.T. III , and Wang, L.P.: Thermomechanics of nanocrystalline nickel under high pressure-temperature conditions. Nano Lett. 7, 426 (2006)CrossRefGoogle Scholar
13Wang, Y.J., Zhang, J.Z., and Zhao, Y.S.: Strength weakening by nanocrystals in ceramic materials. Nano Lett. 7, 3196 (2007)CrossRefGoogle ScholarPubMed
14Fang, L.M., He, D.W., Chen, C., Ding, L.Y., and Luo, X.J.: Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets. High Pressure Res. 27, 367 (2007)CrossRefGoogle Scholar
15Lei, L., He, D.W., Zou, Y.T., Zhang, W., Wang, Z., Jiang, M., and Du, M.L.: Phase transitions of LiAlO2 at high pressure and high temperature. J. Solid State Chem. 181, 1810 (2008)CrossRefGoogle Scholar
16He, D.W., Akaishi, M., and Tanaka, T.: High pressure synthesis of cubic boron nitride from Si-hBN system. Diamond Relat. Mater. 10, 1465 (2001)CrossRefGoogle Scholar
17Palosz, B., Grzanka, E., Gierlotka, S., Stelmakh, S., Pielaszek, R., Lojkowski, W., Bismayer, U., Neuefeind, J., Weber, H.P., and Palosz, W.: Application of x-ray powder diffraction to nano-materials: Determination of the atomic structure of nanocrystals with relaxed and strained surfaces. Phase Trans. 76, 171 (2003)Google Scholar
18Palosz, B., Grzanka, E., Gierlotka, S., Stelmakh, S., Pielaszek, P., Bismayer, U., Neuefeind, J., Weber, H.P., and Palosz, W.: Diffraction studies of nanocrystals: Theory and experiment. Acta Phys. Pol., A 102(1), 57 (2002).Google Scholar
19Lechermann, F. and Fähnle, M.: Ab-initio statistical mechanics for the phase diagram of NiAl including the effect of vacancies. Phys. Status Solidi B 224, R4 (2001).Google Scholar
20Zhao, Y.H., Zhang, K., and Lu, K.: Structure characteristics of nanocrystalline element selenium with different grain sizes. Phys. Rev. B: Condens. Matter 56, 14322 (1997)Google Scholar
21Roy, T.K., Bhowmick, D., Sanyal, D., and Chakrabarti, A.: Sintering studies of nano-crystalline zinc oxide. Ceram. Int. 34, 81 (2008)CrossRefGoogle Scholar
22He, D.W. and Duffy, T.S.: X-ray diffraction study of the static strength of tungsten to 69 GPa. Phys. Rev. B: Condens. Matter 73, 134106 (2006)CrossRefGoogle Scholar
23Skandan, G., Hahn, H., Kear, B.H., Roddy, M., and Cannon, W.R.: The effect of applied stress on densification of nanostructured zirconia during sinter-forging. Mater. Lett. 20, 305 (1994)CrossRefGoogle Scholar
24Coble, R.L.: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 (1970)CrossRefGoogle Scholar
25Uhlmann, D.R., Hays, J.F., and Turnbull, D.: The effect of high pressure on crystallization kinetics with special reference to fused silica. Phys. Chem. Glasses 7, 159 (1966)Google Scholar
26Lu, G.Q., Nygren, E., Aziz, M.J., Turnbull, D., and White, C.W.: Pressure-enhanced solid phase epitaxy of germanium. Appl. Phys. Lett. 56, 137 (1990)Google Scholar
27He, D.W., Zhao, Q., Wang, W.H., Che, R.Z., Liu, J., Luo, X.J., and Wang, W.K.: Pressure-induced crystallization in a bulk amorphous Zr-based alloy. J. Non-Cryst. Solids 297, 84 (2002)Google Scholar
28Varela, J.A., Whittemore, O.J., and Longo, E.: Pore size evolution during sintering of ceramic oxides. Ceram. Int. 16, 177 (1990)Google Scholar
29Liu, C.T., George, E.P., Maziasz, P.J., and Schneibel, J.H.: Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design. Mater. Sci. Eng., A 258, 84 (1998)CrossRefGoogle Scholar
30Hall, E.O.: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc., Ser. B 64, 747 (1951)Google Scholar
31Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Res. Inst. 174, 25 (1953)Google Scholar
32Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006)Google Scholar
33Yip, S.: The strongest size. Nature 391, 532 (1998)Google Scholar
34Carlton, C.E. and Ferreira, P.J.: What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater. 55, 3749 (2007)Google Scholar
35Padmanabhan, K.A., Dinda, G.P., Hahn, H., and Gleiter, H.: Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials. Mater. Sci. Eng., A 452-453, 462 (2007)Google Scholar