Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T16:01:02.489Z Has data issue: false hasContentIssue false

High-pressure synthesis and Sn valence state analysis of BaTiO3–SnO solid solution

Published online by Cambridge University Press:  20 October 2014

Shoichiro Suzuki*
Affiliation:
Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan; and Murata Manufacturing, Co., Ltd., Nagaokakyo, Kyoto 617-8555, Japan
Ken Niwa
Affiliation:
Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
Atushi Honda
Affiliation:
Murata Manufacturing, Co., Ltd., Nagaokakyo, Kyoto 617-8555, Japan
Shunsuke Muto
Affiliation:
EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
Akira Ando
Affiliation:
Murata Manufacturing, Co., Ltd., Nagaokakyo, Kyoto 617-8555, Japan
Masashi Hasegawa
Affiliation:
Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
*
a)Address all correspondence to this author. e-mail: shoichiro_suzuki@murata.co.jp
Get access

Abstract

BaTiO3–SnO solid solutions have been investigated from the viewpoints of synthesis and Sn ion valence. First-principles calculations show that the solution energy of Sn2+ into the Ba sites in BaTiO3 is less than that into the Ti sites under high pressure. The BaTiO3–SnO solid solutions have been synthesized under high pressure (∼20 GPa) and temperatures using a laser-heated diamond anvil cell. The synthesized materials have been characterized using x-ray diffractometry, scanning transmission electron microscopy, and energy-dispersive x-ray spectroscopy. It is found from these various methods that we have successfully synthesized uniform solid solutions of BaTiO3–SnO. Furthermore, it is also clarified by the Sn L3-edge electron energy loss spectra measurements that the valences of the Sn ions in the BaTiO3–SnO solid solution are 2+. These results indicate that the Sn2+ ions are substituted into the Ba sites, according to the ion size. Consequently, the Sn ions can be substituted into the Ba sites of the shrinking BaTiO3 lattice under high pressure, which is similar to the Ca and Sn co-substitution into Ba sites under ambient pressure as reported previously.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hippel, A.V., Breckenridge, R.G., Chesley, F.G., and Tisza, L.: High dielectric constant ceramics. Ind. Eng. Chem. 38, 1097 (1946).CrossRefGoogle Scholar
Sakabe, Y.: Multilayer ceramic capacitors. Curr. Opin. Solid State Mater. Sci. 2, 584 (1997).CrossRefGoogle Scholar
Saito, H., Chazono, H., Kishi, H., and Yamaoka, N.: X7R multilayer ceramic capacitors with nickel electrodes. Jpn. J. Appl. Phys. 30, 2307 (1991).CrossRefGoogle Scholar
Wada, N., Tanaka, H., Hamaji, Y., and Sakabe, Y.: Microstructures and dielectric properties of fine-grained BaTiO3 ceramics. Jpn. J. Appl. Phys. 35, 5141 (1996).CrossRefGoogle Scholar
Yamamatsu, J., Kawano, N., Arashi, T., Sato, A., Nakano, Y., and Nomura, T.: Reliability of multilayer ceramic capacitors with nickel electrodes. J. Power Sources 60, 199 (1996).CrossRefGoogle Scholar
Nakamura, T., Sano, H., Konoike, T., and Tomono, K.: BaTiO3-based non-reducible low-loss dielectric ceramics. Jpn. J. Appl. Phys. 38, 5457 (1999).CrossRefGoogle Scholar
Sakabe, Y., Hamaji, Y., Sano, H., and Wada, N.: Effects of rare-earth oxides on the reliability of X7R dielectrics. Jpn. J. Appl. Phys. 41, 5668 (2002).CrossRefGoogle Scholar
Burns, G.: Lattice modes in ferroelectric perovskites. II. Pb1-xBaxTiO3 including BaTiO3. Phys. Rev. B 10, 1951 (1974).CrossRefGoogle Scholar
Payne, D.J., Egdell, R.G., Walsh, A., Watson, G.W., Guo, J., Glans, P-A., Learmonth, T., and Smith, K.E.: Electronic origins of structural distortions in post-transition metal oxides: Experimental and theoretical evidence for a revision of the lone pair model. Phys. Rev. Lett. 96, 157403 (2006).CrossRefGoogle ScholarPubMed
Kuroiwa, Y., Aoyagi, S., Sawada, A., Harada, J., Nishibori, E., Takata, M., and Sakata, M.: Evidence for Pb-O covalency in tetragonal PbTiO3. Phys. Rev. Lett. 87, 217601 (2001).CrossRefGoogle ScholarPubMed
Matar, S.F., Baraille, I., and Subramanian, M.A.: First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material. Chem. Phys. 355, 43 (2009).CrossRefGoogle Scholar
Uratani, Y., Shishidou, T., and Oguchi, T.: First-principles study of lead-free piezoelectric SnTiO3. Jpn. J. Appl. Phys. 47, 7735 (2008).CrossRefGoogle Scholar
Xie, Y., Yin, S., Hashimoto, T., Kimura, H., and Sato, T.: Microwave-hydrothermal synthesis of nano-sized Sn2+-doped BaTiO3 powders and dielectric properties of corresponding ceramics obtained by spark plasma sintering method. J. Mater. Sci. 44, 4834 (2009).CrossRefGoogle Scholar
Lee, C.E., Randall, C.A., Kim, D.Y., and Kim, S.H.: Multi-site and multi-ionization of Sn in the doping of BaTiO3. J. Am. Ceram. Soc. 97, 513 (2014).CrossRefGoogle Scholar
Suzuki, S., Takeda, T., Ando, A., and Takagi, H.: Ferroelectric phase transition in Sn2+ ions doped (Ba,Ca)TiO3 ceramics. Appl. Phys. Lett. 96, 132903 (2010).CrossRefGoogle Scholar
Suzuki, S., Takeda, T., Ando, A., Oyama, T., Wada, N., Niimi, H., and Takagi, H.: Effect of Sn2+ ion substitution on dielectric properties of (Ba,Ca)TiO3 ferroelectric ceramics. Jpn. J. Appl. Phys. 49, 09MC04 (2010).CrossRefGoogle Scholar
Suzuki, S., Honda, A., Higai, S., Ando, A., Wada, N., and Takagi, H.: Effects of lattice constant and sintering atmosphere on substitution of Sn2+ ions at Ba site in (Ba,Ca)TiO3 perovskites: Experimental and theoretical studies. Jpn. J. Appl. Phys. 50, 09NC11 (2011).CrossRefGoogle Scholar
Suzuki, S., Iwaji, N., Honda, A., Higai, S., Wada, N., Ando, A., and Takagi, H.: Substitution of Sn ions in (Ba,Ca)TiO3 perovskites. Jpn. J. Appl. Phys. 51, 09LC08 (2012).CrossRefGoogle Scholar
Samara, G.A.: Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3. Ferroelectrics 2, 277 (1971).CrossRefGoogle Scholar
Hasegawa, M. and Yagi, T.: Growth of nitride crystals in a supercritical nitrogen fluid under high pressures and high temperatures yield using diamond anvil cell and YAG laser heating. J. Cryst. Growth 217, 349 (2000).CrossRefGoogle Scholar
Kresse, G.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Kresse, G.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Higai, S., Honda, A., Motoyoshi, Y., Wada, N., Takagi, H., and Sakabe, Y.: Industry meets theory: Computational R & D for innovative products. J. Phys.: Condens. Matter 22, 384209 (2010).Google ScholarPubMed
Honda, A., Higai, S., Motoyoshi, Y., Wada, N., and Takagi, H.: Theoretical study on interactions between oxygen vacancy and doped rare-earth elements in barium titanate. Jpn. J. Appl. Phys. 50, 09NE01 (2011).CrossRefGoogle Scholar
Lee, S., Randall, C.A., and Liu, Z.K.: Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 2589 (2007).CrossRefGoogle Scholar
Mao, H.K., Xu, J., and Bell, P.M.: Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673 (1986).CrossRefGoogle Scholar
Moreno, M., Egerton, R., and Midgley, P.: Differentiation of tin oxides using electron energy-loss spectroscopy. Phys. Rev. B 69, 233304 (2004).CrossRefGoogle Scholar
Liu, Z., Handab, K., Kaibuchi, K., and Tanaka, Y., and Kawai, J.: Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO, and SnO2. J. Electron Spectrosc. Relat. Phenom. 135, 155 (2004).CrossRefGoogle Scholar
Neuville, D.R., Cormier, L., de Ligny, D., Roux, J., Flank, A-M., and Lagarde, P.: Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature. Am. Mineral. 93, 228 (2008).CrossRefGoogle Scholar