Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T06:33:42.989Z Has data issue: false hasContentIssue false

Identifying rhenium substitute candidate multiprincipal-element alloys from electronic structure and thermodynamic criteria

Published online by Cambridge University Press:  10 June 2019

Axel van de Walle*
Affiliation:
Box D, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
Julian E.C. Sabisch
Affiliation:
Energy Nanomaterials, Sandia National Laboratories, Livermore, California 94550, USA
Andrew M. Minor
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA; and National Center for Electron Microscopy, Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Mark Asta
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA; and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
*
a)Address all correspondence to this author. e-mail: avdw@alum.mit.edu
Get access

Abstract

While rhenium has proven to be an ideal material in fast-cycling high-temperature applications such as rocket nozzles, its prohibitive cost limits its continued use and motivates a search for viable cost-effective substitutes. We show that a simple design principle that trades off average valence electron count and cost considerations proves helpful in identifying a promising pool of candidate substitute alloys: The Mo–Ru–Ta–W quaternary system. We demonstrate how this picture can be combined with a computational thermodynamic model of phase stability, based on high-throughput ab initio calculations, to further narrow down the search and deliver alloys that maintain rhenium’s desirable hcp crystal structure. This thermodynamic model is validated with comparisons to known binary phase diagram sections and corroborated by experimental synthesis and structural characterization demonstrating multiprinciple-element hcp solid-solution samples selected from a promising composition range.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

Campbell, I.E., Rosenbaum, D.M., and Gonser, B.W.: The availability, recovery and properties of rhenium metal. J. Less-Common Met. 1, 185 (1959).CrossRefGoogle Scholar
Carlen, J-C. and Bryskin, B.D.: Rhenium—A unique rare metal. Mater. Manuf. Processes 9, 1087 (1994).CrossRefGoogle Scholar
Fink, P.J., Miller, J.L., and Konitzer, D.G.: Rhenium reduction—Alloy design using an economically strategic element. JOM 62, 55 (2010).CrossRefGoogle Scholar
Wrona, A., Stasewski, M., Czepelak, M., Woch, M., Kaminska, M., Osadnik, M., and Kolacz, D.: Properties of rhenium-based master alloys prepared by powder metallurgy techniques. Arch. Mater. Sci. Eng. 45, 95 (2010).Google Scholar
van de Walle, A., Sun, R., Hong, Q-J., and Kadkhodaei, S.: Software tools for high-throughput CALPHAD from first-principles data. Calphad 58, 70 (2017).CrossRefGoogle Scholar
Pettifor, D.G. and Cottrell, A.H.: Electron Theory in Alloy Design (The Institute of Materials, London, 1992).Google Scholar
Pettifor, D.: Bonding and Structure in Molecules and Solids (Oxford University Press, New York, 1995).Google Scholar
de Jong, M.M., Kacher, J., Sluiter, M.H.F., Qi, L., Olmsted, D.L., van de Walle, A., Morris, J.W., Minor, A.M., and Asta, M.D.: Electronic origins of anomalous twinning in hexagonal close packed transition metals. Phys. Rev. Lett. 115, 065501 (2015).CrossRefGoogle Scholar
Berne, C., Pasturel, A., Sluiter, M., and Vinet, B.: Ab initio study of metastability in refractory metal based systems. Phys. Rev. Lett. 83, 1621 (1999).CrossRefGoogle Scholar
Sluiter, M.: Some observed bcc, fcc, and hcp superstructures. Phase Transitions 80, 299 (2007).CrossRefGoogle Scholar
Sluiter, M.: Lattice stability prediction of elemental tetrahedrally close-packed structures. Acta Mater. 55, 3707 (2007).CrossRefGoogle Scholar
Seiser, B., Hammerschmidt, T., Kolmogorov, A.N., Drautz, R., and Pettifor, D.G.: Theory of structural trends within 4d and 5d transition metal topologically close-packed phases. Phys. Rev. B 83, 224116 (2011).CrossRefGoogle Scholar
Hammerschmidt, T., Drautz, R., and Pettifor, D.G.: Atomistic modelling of materials with bond-order potentials. Int. J. Mater. Res. 100, 1479 (2009).CrossRefGoogle Scholar
Karakaya, I. and Thompson, W.T.: Ag–Ru (Silver–Ruthenium), Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., ed. (ASM International, Materials Park, Ohio, 1990); p. 84.Google Scholar
Baren, M.R.: Ag–Mo (Silver–Molybdenum), Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., ed. (ASM International, Materials Park, Ohio, 1990); p. 59.Google Scholar
Krishnan, R., Garg, S.P., and Krishnamurthy, N.: Mo–Ta (Molybdenum–Tantalum), Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., ed. (ASM International, Materials Park, Ohio, 1990); p. 2671.Google Scholar
Wang, C.P., Wang, J., Guo, S.H., Liu, X.J., Ohnuma, I., Kainuma, R., and Ishida, K.: Experimental investigation and thermodynamic calculation of the phase equilibria in the Co–Mo–W system. Intermetallics 17, 642 (2009).CrossRefGoogle Scholar
Krishnan, R., Garg, S.P., and Krishnamurthy, N.: Ta–W (Tantalum–Tungsten), Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., ed. (ASM International, Materials Park, Ohio, 1990); p. 3438.Google Scholar
Oh, C.S., Murakami, H., and Harada, H.: Thermodynamic evaluation of the Mo–Ru system. J. Alloys Compd. 313, 115 (2000).CrossRefGoogle Scholar
Okamoto, H.: Mo–Ru (Molybdenum–Ruthenium), Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., ed. (ASM International, Materials Park, Ohio, 1990); p. 2656.Google Scholar
Levy, O., Jahnatek, M., Chepulskii, R.V., Hart, G.L.W., and Curtarolo, S.: Ordered structures in rhenium binary alloys from first-principles calculations. J. Am. Chem. Soc. 133, 158 (2011).CrossRefGoogle ScholarPubMed
Mousa, A.A., Khalifeh, J.M., and Hamad, B.A.: Electronic, elastic structure and phase stability of TaRu shape memory alloys. Am. J. Condens. Matter. Phys. 3, 1 (2013).Google Scholar
Kadkhodaei, S. and van de Walle, A.: Free energy calculations of the mechanically unstable phases of PtTi and NiTi. Acta Mater. 147, 296 (2018).CrossRefGoogle Scholar
Okamoto, H.: Ru–Ta (Ruthenium–Tantalum). J. Phase Equilib. 12, 395 (1991).Google Scholar
Okamoto, H.: Ru–W (Ruthenium–Tungsten), Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., ed. (ASM International, Materials Park, Ohio, 1990); p. 3269.Google Scholar
Kabanov, S.V., Subbotin, I.M., and Loboda, T.P.: Physico-chemical investigation of molybdenum and ruthenium with tantalum and tungsten interaction. Fazovye Ravnovesiya Met. Splavakh, 266/9; C.A. 96 (1981) No. 206268.Google Scholar
Subbotin, I.M., Raevskaya, M.V., Loboda, T.P., and Sokolovskaya, E.M.: The reaction of molybdenum and ruthenium with transition metals of period VI. Moscow Univ. Chem. Bull. 36, 51 (1981).Google Scholar
Zunger, A., Wei, S-H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle ScholarPubMed
van de Walle, A., Tiwary, P., de Jong, M.M., Olmsted, D.L., Asta, M.D., Dick, A., Shin, D., Wang, Y., Chen, L-Q., and Liu, Z-K.: Efficient stochastic generation of special quasirandom structures. Calphad 42, 1318 (2013).CrossRefGoogle Scholar
Andersson, J-O., Guillermet, A.F., Hillert, M., Jansson, B., and Sundman, B.: A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437 (1986).CrossRefGoogle Scholar
Hillert, M.: The compound energy formalism. J. Alloys Compd. 320, 161 (2001).CrossRefGoogle Scholar
Kattner, U.R.: Thermodynamic modeling of multicomponent phase equilibria. JOM 49, 14 (1997).CrossRefGoogle Scholar
Dinsdale, A.T.: SGTE Data for pure elements. Calphad 15, 317 (1991).CrossRefGoogle Scholar
van de Walle, A.: Reconciling SGTE and ab initio enthalpies of the elements. Calphad 60, 1 (2018).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
van de Walle, A. and Ceder, G.: Automating first-principles phase diagram calculations. J. Phase Equilib. 23, 348359 (2002).CrossRefGoogle Scholar
Methfessel, M. and Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).CrossRefGoogle ScholarPubMed
Blöchl, P.E., Jepsen, O., and Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).CrossRefGoogle ScholarPubMed
van de Walle, A., Hong, Q-J., Kadkhodaei, S., and Sun, R.: The free energy of mechanically unstable phases. Nat. Commun. 6, 7559 (2015).CrossRefGoogle ScholarPubMed
van de Walle, A., Kadkhodaei, S., Sun, R., and Hong, Q-J.: Epicycle method for elasticity limit calculations. Phys. Rev. B 95, 144113 (2017).CrossRefGoogle Scholar
van de Walle, A.: Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 33, 266278 (2009).CrossRefGoogle Scholar
van de Walle, A., Asta, M.D., and Ceder, G.: The alloy theoretic automated toolkit: A user guide. Calphad 26, 539553 (2002).CrossRefGoogle Scholar
van de Walle, A. and Ceder, G.: The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 1145 (2002).CrossRefGoogle Scholar
Cao, W., Chen, S-L., Zhang, F., Wu, K., Yang, Y., Chang, Y.A., Schmid-Fetzer, R., and Oates, W.A.: PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33, 328 (2009).CrossRefGoogle Scholar
van de Walle, A., Nataraj, C., and Liu, Z-K.: The thermodynamic database database. Calphad 61, 173 (2018).CrossRefGoogle Scholar
Sundman, B., Kattner, U.R., Palumbo, M., and Fries, S.G.: OpenCalphad—A free thermodynamic software. Integr. Mater. Manuf. Innovation 4, 1 (2015).CrossRefGoogle Scholar
Sundman, B., Kattner, U.R., Sigli, C., Stratmann, M., Tellier, R.L., Palumbo, M., and Fries, S.G.: The OpenCalphad thermodynamic software interface. Comput. Mater. Sci. 125, 188 (2016).CrossRefGoogle ScholarPubMed