Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T11:50:24.710Z Has data issue: false hasContentIssue false

Improved electrical and dielectric properties of La-doped Co ferrite

Published online by Cambridge University Press:  11 January 2011

K. Kamala Bharathi
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968
C.V. Ramana*
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968
*
a)Address all correspondence to this author. e-mail: rvchintalapalle@utep.edu
Get access

Abstract

We report on the enhanced dielectric constant and electrical resistivity of the Co-ferrite (CoO.Fe2O3) by partially substituting Fe with La. Structural characteristics of La-doped Co ferrite namely CoO.Fe1.925La0.075O3 indicate the cubic inverse spinel phase with a small amount of LaFeO3 additional phase. The lattice parameter obtained is 8.401 Å (±0.001 Å), which is higher than that reported for Co ferrite (8.387 Å, ±0.001 Å). The dielectric constant and electrical resistivity of CoO.Fe1.925La0.075O3 are higher compared with pure Co ferrite. The dielectric constant dispersion of CoO.Fe1.925La0.075O3 in the frequency range of 100 Hz to 1 MHz fits to the modified Debye’s function with more than one ion contributing to the relaxation. Temperature-dependent electrical resistivity curves exhibit two distinct regions indicative of two different types of conduction mechanisms. Analysis of the data indicates that the small polaron and variable-range hopping mechanisms are operative in the 220 to 300 K and 160 to 220 K temperature regions, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chikazumi, S.: Physics of Ferromagnetism (Oxford University Press, New York, 1997).CrossRefGoogle Scholar
2.Smith, J. and Wijn, H.P.J.: Ferrites (Philips Technical Library, Eindhoven, The Netherlands, 1965).Google Scholar
3.Vereda, F., de Vicente, J., and Hidalgo-Álvarez, R.: Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field. J. Mater. Res. 23, 1764 (2008).CrossRefGoogle Scholar
4.Peelamedu, R., Grimes, C., Agrawal, D., Roy, R., and Yadoji, P.: Ultralow-dielectric constant nickel-zinc ferrites using microwave sintering. J. Mater. Res. 18, 2292 (2003).CrossRefGoogle Scholar
5.Arcos, D., Vázquez, M., Valenzuela, R., and Vallet-Regi, M.: Grain boundary impedance of doped Mn–Zn ferrites. J. Mater. Res. 14, 861 (1999).Google Scholar
6.Gu, Z., Xiang, X., Fan, G., and Li, F.: Facile synthesis and characterization of cobalt ferrite nanocrystal via a simple reduction-oxidation route. J. Phys. Chem. C 112, 18459 (2008).CrossRefGoogle Scholar
7.Kulikowski, J. and Bienkowski, A.: Magnetostriction of Ni–Zn ferrites containing cobalt. J. Magn. Magn. Mater. 26, 297 (1982).CrossRefGoogle Scholar
8.Cheng, F., Liao, C., Kuang, J., Xu, Z., Yan, C., Chen, L., Zhao, H., and Liu, Z.: Nanostructure magneto-optical thin films of rare earth (RE = Gd, Tb, Dy) doped cobalt spinel by sol–gel synthesis. J. Appl. Phys. 85, 2782 (1999).CrossRefGoogle Scholar
9.Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).CrossRefGoogle ScholarPubMed
10.Khomskii, D.I.: Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006).CrossRefGoogle Scholar
11.Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
12.Zhong, X.L., Liao, M., Wang, J.B., Xie, S.H., and Zhou, Y.C.: Structural, ferroelectric, ferromagnetic, and magnetoelectric properties of the lead-free Bi3.15Nd0.85Ti3O12/CoFe2O4 double-layered thin film. J. Cryst. Growth 310, 2995 (2008).CrossRefGoogle Scholar
13.Fiebig, M.: Revival of magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).CrossRefGoogle Scholar
14.Kadam, S.L., Kanamadi, C.M., Patankar, K.K., and Chougule, B.K.: Dielectric behaviour and magnetoelectric effect in Ni0.5Co0.5Fe2O4 + Ba0.8Pb0.2TiO3 ME composites. Mater. Lett. 59, 215 (2005).CrossRefGoogle Scholar
15.Manova, E., Kunev, B., Paneva, D., Mitov, I., and Petrov, L.: Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16, 5689 (2005).Google Scholar
16.Song, Q. and Zhang, Z.J.: Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals. J. Phys. Chem. B 110, 11205 (2006).CrossRefGoogle ScholarPubMed
17.Gul, I.H. and Maqsood, A.: Structural, magnetic and electrical properties of cobalt ferrites prepared by the solgel route. J. Alloys Compd. 465, 227 (2008).CrossRefGoogle Scholar
18.Gopal Reddy, C.V., Manorama, S.V., and Rao, V.J.: Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators, B 55, 90 (1990).CrossRefGoogle Scholar
19.Gunjakar, J.L., More, A.M., Shinde, V.R., and Lokhande, C.D.: Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J. Alloys Compd. 465, 468 (2008).CrossRefGoogle Scholar
20.Nuli, Y.N. and Qin, Q.Z.: Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. J. Power Sources 142, 292 (2005).CrossRefGoogle Scholar
21.Sun, G.L., Li, J.B., Sun, J.J., and Yang, X.Z.: The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel–zinc ferrites. J. Magn. Magn. Mater. 281, 173 (2004).Google Scholar
22.Rezlescu, N., Rezlescu, E., Pasnicu, C., and Craus, M.L.: Effects of the rare-earth ions on some properties of nickel–zinc ferrite. J. Phys. Condens. Matter 6, 5707 (1994).Google Scholar
23.Hochschild, R. and Fuess, H.: Rare-earth doping of nickel zinc ferrites. J. Mater. Chem. 10, 539 (2000).CrossRefGoogle Scholar
24.Sileo, E.E., Silvia, E., and Jacobo, E.: Gadolinium–nickel ferrites prepared from metal citrates precursors. Physica B 354, 241 (2004).CrossRefGoogle Scholar
25.Ajmal, M. and Maqsood, A.: Influence of zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites. Mater. Sci. Eng., B 139, 164 (2007).CrossRefGoogle Scholar
26.Devan, R.S., Kolekar, Y.D., and Chougule, B.K.: Effect of cobalt substitution on the properties of nickel copper ferrite. J. Phys. Condens. Matter 18, 9809 (2006).CrossRefGoogle Scholar
27.Larson, A.C. and Von Dreele, R.B.: General Structure Analysis System (GSAS), in Los Alamos National Laboratory Report LAUR (The Regents of the University of California, Los Alamos, NM, 2004), p. 86.Google Scholar
28.Dunitz, J.D. and Orgel, L.E.: Electronic properties of transition-metal oxides. J. Phys. Chem. Solids 3, 20 (1957).CrossRefGoogle Scholar
29.Ramana, C.V., Ait-Salah, A., Utsunomiya, S., Morhange, J.F., Maugher, A., Gendron, F., and Julien, C.M.: Spectroscopic and chemical imaging analysis of lithium iron triphosphate. J. Phys. Chem. C 111, 1049 (2007).CrossRefGoogle Scholar
30.Ramana, C.V., Ait-Salah, A., Utsunomiya, S., Becker, U., Mauger, A., Gendron, F., and Julien, C.M.: Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy. Chem. Mater. 18, 3788 (2006).CrossRefGoogle Scholar
31.Mott, N.F. and Davis, E.A.: Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979).Google Scholar
32.Hutchins, M.G., Abu-Alkhair, O., El-Nahass, M.M., and Abdel Hady, K.: Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) thin films. J. Phys. Condens. Matter 18, 9987 (2006).CrossRefGoogle Scholar
33.Fujiwara, A., Tada, M., Nakagawa, T., and Abe, M.: Permeability and electric resistivity of spin-sprayed Zn ferrite films for high-frequency device applications. J. Magn. Magn. Mater. 320, L67 (2008).CrossRefGoogle Scholar
34.Gangopadhyay, R.A., De, R.A., and Das, S.: Transport properties of polypyrrole ferric oxide conducting nanocomposites. J. Appl. Phys. 87, 2363 (2000).Google Scholar
35.Ambily, S. and Menon, C.S.: The effect of growth parameters on the electrical, optical and structural properties of copper phthalocyanine thin films. Thin Solid Films 347, 284 (1999).CrossRefGoogle Scholar
36.Cole, K.S. and Cole, R.H.: Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941).CrossRefGoogle Scholar
37.Anderson, J.C.: Dielectrics (Spottiswoode, Ballantyne & Co. Ltd., London, 1964).Google Scholar