Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T03:26:00.541Z Has data issue: false hasContentIssue false

Improving the high-temperature oxidation resistance of Zr2Al3C4 by silicon pack cementation

Published online by Cambridge University Press:  31 January 2011

L.F. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Y.W. Bao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: yczhou@imr.ac.cn
Get access

Abstract

Silicon pack cementation has been applied to improve the oxidation resistance of Zr2Al3C4. The Si pack coating is mainly composed of an inner layer of ZrSi2 and SiC and an outer layer of Al2O3 at 1200 °C. The growth kinetics of silicide coating at 1000–1200 °C obey a parabolic law with an activation energy of 110.3 ± 16.7 kJ/mol, which is controlled by inward diffusion of Si and outward diffusion of Al. Compared with Zr2Al3C4, the oxidation resistance of siliconized Zr2Al3C4 is greatly improved due to the formation of protective oxidation products, aluminosilicate glass, mullite, and ZrSiO4.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Leela-adisorn, U., Choi, S.M., Hashimoto, S., Honda, S., Awaji, H., Hayakawa, K., Yamaguchi, A.: Sintering and characterization of Zr2Al3C5 monolith. Key Eng. Mater. 317–318, 27 2006CrossRefGoogle Scholar
2He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., Li, M.S., Zhou, Y.C.: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 2007CrossRefGoogle Scholar
3He, L.F., Wang, J.Y., Bao, Y.W., Zhou, Y.C.: Elastic and thermal properties of Zr2Al3C4: Experimental investigation and ab initio calculations. J. Appl. Phys. 102, 043531 2007CrossRefGoogle Scholar
4He, L.F., Lin, Z.J., Bao, Y.W., Li, M.S., Wang, J.Y., Zhou, Y.C.: Isothermal oxidation of bulk Zr2Al3C4 at 500 to 1000 °C in air. J. Mater. Res. 23, 359 2008CrossRefGoogle Scholar
5He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., Li, M.S., Zhou, Y.C.: Structure and high-temperature stiffness of layered ternary carbides, unpublishedGoogle Scholar
6Majumdar, S., Sengupta, P., Kale, G.B., Sharma, I.G.: Development of multilayer oxidation resistant coatings on niobium and tantalum. Surf. Coat. Technol. 200, 3713 2006CrossRefGoogle Scholar
7Xiang, Z.D., Datta, P.K.: Relationship between pack chemistry and aluminide coating formation for low-temperature aluminisation of alloy steels. Acta Mater. 54, 4453 2006CrossRefGoogle Scholar
8Cairo, C.A.A., Graca, M.L.A., Silva, C.R.M., Bressiani, J.C.: Functionally gradient ceramic coating for carbon-carbon antioxidation protection. J. Eur. Ceram. Soc. 21, 325 2001CrossRefGoogle Scholar
9Fu, Q.G., Li, H.J., Shi, X.H., Li, K.Z., Huang, M., Sun, G.D.: Silicide coating for protection of C/C composites at 1873 K. Surf. Coat. Technol. 201, 3082 2006Google Scholar
10Liu, G.M., Li, M.S., Zhou, Y.C., Zhang, Y.M.: Oxidation behavior of silicide coating on Ti3SiC2-based ceramic. Mater. Res. Innnovations 6, 226 2002CrossRefGoogle Scholar
11Li, M., Liu, G., Zhang, Y., Zhou, Y.: Influence of Al–La cocementation on the oxidation behavior of Ti3SiC2-base ceramic. Oxid. Met. 60, 179 2003CrossRefGoogle Scholar
12Wei, W.C.J., Wu, T.M.: Oxidation of carbon/carbon composite coated with SiC–(Si/ZrSi2)–ZrSi2. Carbon 32, 605 1994CrossRefGoogle Scholar
13Guinel, M.J-F., Norton, M.G.: Oxidation of silicon carbide and the formation of silica polymorphs. J. Mater. Res. 21, 2550 2006CrossRefGoogle Scholar
14Birks, N., Meier, G.H.: Introduction to High Temperature Oxidation of Metals Edward Arnold London 1983Google Scholar
15Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., Causey, S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 1999CrossRefGoogle Scholar
16Binary Alloy Phase Diagrams 2nd edition edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak ASM International Materials Park, OH 1990 211213Google Scholar
17Huang, X.X., Wen, G.W., Cheng, X.M., Zhang, B.Y.: Oxidation behavior of Al4SiC4 ceramic up to 1700 °C. Corros. Sci. 49, 2059 2007CrossRefGoogle Scholar
18Bartsch, M., Saruhan, B., SchmUcker, M., Schneider, H.: Novel low-temperature processing of dense mullite ceramics by reaction sintering of amorphous SiO2-coated γ-Al2O3 particle nanocomposites. J. Am. Ceram. Soc. 82, 1388 1999CrossRefGoogle Scholar
19Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—A review. J. Eur. Ceram. Soc. 28, 329 2008CrossRefGoogle Scholar
20Tsai, C.Y., Lin, C.C., Zangvil, A., Li, A.K.: Effect of zirconia content on the oxidation behavior of silicon carbide/zirconia/mullite composites. J. Am. Ceram. Soc. 81, 2413 1998CrossRefGoogle Scholar