Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T02:07:13.340Z Has data issue: false hasContentIssue false

In situ x-ray CT under tensile loading using synchrotron radiation

Published online by Cambridge University Press:  03 March 2011

T. Hirano
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., Omika-cho 7-1-1, Hitachi-shi, Ibaraki 319-12, Japan
K. Usami
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., Omika-cho 7-1-1, Hitachi-shi, Ibaraki 319-12, Japan
Y. Tanaka
Affiliation:
National Research Institute for Metals, Nakameguro 2-3-12, Meguro-ku, Tokyo 153, Japan
C. Masuda
Affiliation:
National Research Institute for Metals, Nakameguro 2-3-12, Meguro-ku, Tokyo 153, Japan
Get access

Abstract

Internal damage in metal matrix composite (MMC) under static tensile loading was observed by in situ x-ray computed tomography based on synchrotron radiation (SR-CT). A tensile testing sample stage was developed to investigate the fracture process during the tensile test. Aluminum alloy matrix composites reinforced by long or short SiC fibers were used. The projection images obtained under tensile loading showed good performance of the sample stage, and matrix deformation and breaks of the long SiC fibers could be observed. In the CT images taken at the maximum stress just before failure, debondings of the short SiC fibers to the matrix, many pullouts of the fibers, and matrix cracking could be clearly observed. The in situ SR-CT allowed the observation of generation and growth of such defects under different tensile stress levels. The results from the nondestructive observation revealed that the MMC was broken by propagation of the matrix cracks which might be caused by stress concentration at the ends of the short fibers. A three-dimensional CT image reconstructed from many CT images provided easy understanding of the fiber arrangement, crack shape, and form of the void caused by fiber pullout. In situ SR-CT is a useful method for understanding failure mechanisms in advanced materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hirano, T. and Usami, K., Jpn. J. Appl. Phys. 28, 263 (1989).CrossRefGoogle Scholar
2Flannery, B. P., Deckman, H. W., Roberge, W. G., and D'Amico, K. L., Science 237, 1439 (1987).CrossRefGoogle Scholar
3Kinney, J. H., Johnson, Q. C., Bonse, U., Nichols, M. C., Saroyan, R. A., Nusshardt, R., Pahl, R., and Brase, J. M., MRS. Bull. 13, 13 (1988).CrossRefGoogle Scholar
4Nagata, Y., Yamaji, H., Hayashi, K., Kawashima, K., Hyodo, K., Kawata, H. and Ando, M., Rev. Sci. Instrum. 63, 615 (1992).CrossRefGoogle Scholar
5Hirano, T., Usami, K., and Sakamoto, K., Rev. Sci. Instrum. 60, 2482 (1989).CrossRefGoogle Scholar
6Kinney, J. H., Stock, S. R., Nichols, M. C., Bonse, U., Breunig, T. M., Saroyan, R. A., Nusshardt, R., Johnson, Q. C., Busch, F., and Antolovich, S. D., J. Mater. Res. 5, 1123 (1990).CrossRefGoogle Scholar
7Masuda, C., Tanaka, Y., Usami, K., Hirano, T., Imai, Y., Shiota, I., Furubayashi, E., and Iwasaki, H., Nondestr. Test. Eval. 8, 779 (1992).CrossRefGoogle Scholar
8Breunig, T. M., Stock, S. R., Antolovich, S. D., Kinney, J. H., Massey, W. N., and Nichols, M. C., ASTM Spec. Tech. Publ. 1, 749 (1992).Google Scholar
9Kinney, J. H. and Nichols, M. C., Annu. Rev. Mater. Sci. 22, 121 (1992).CrossRefGoogle Scholar
10Tanaka, Y., Masuda, C., Hirano, T., Usami, K., and Nishijima, S., Proc. 3rd Int. SAMPE Symp. Chiba, Japan, 1993, (1994, in press).Google Scholar
11Suzuki, Y., Usami, K., Sakamoto, K., Kozaka, H., Hiarano, T., Shiono, H., and Kohno, H., Jpn. J. Appl. Phys. 27, L461 (1988).CrossRefGoogle Scholar
12Hirano, T., Funaki, M., Nagata, T., Taguchi, I., Hamada, H., Usami, K., and Hayakawa, K., Proc. Natl. Inst. Polar Res. Symp. Antarctic Meteorites (National Institute of Polar Research, Tokyo, 1990), Vol. 3, p. 270.Google Scholar
13Hirai, Y., Waki, I., Hayakawa, K., Kuroishi, K., Yasaka, Y., Kanaya, N., Satow, Y., and Sato, S., Nucl. Instrum. Methods A327, 256 (1993).CrossRefGoogle Scholar
14Suzuki, Y., Hayakawa, K., Usami, K., Hirano, T., Endoh, T., and Okamura, Y., Jpn. J. Appl. Phys. 27, 420 (1988).CrossRefGoogle Scholar