Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T17:48:08.765Z Has data issue: false hasContentIssue false

Influence of Ar impurities on optical refractive index of sputter deposited a–Si films

Published online by Cambridge University Press:  31 January 2011

Hiroki Takahashi
Affiliation:
Optoelectronics Business Department, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Haruki Kataoka
Affiliation:
Optoelectronics Business Department, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Hirotoshi Nagata
Affiliation:
Optoelectronics Research Division, New Technology Research Laboratory, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274, Japan
Get access

Abstract

Amorphous Si (a–Si) films, sputter deposited under lower Ar pressure conditions, include numerous Ar atoms and exhibit high refractive indices, higher even than that of crystalline Si (c–Si), notwithstanding their lower Si densities. Such behavior in the refractive indices of the films was inconsistent with the conventional explanation considering only the density term in the Clausius–Mossotti relation. In the present study, the contribution of the polarizability changes of the films is proposed in order to account for the result in the refractive index. The molecular orbital (MO) calculations and experiments reveal that the polarizability of the a–Si film is sensitive to change in the angular distortion of the Si–Si bonds brought on by changing deposition conditions. The incorporated Ar atoms are found to cause the distortion in the Si network, leading to higher refractive indices for the less densified films.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Wooten, F. and Weaire, D., in Solid State Physics: Advances in Research Applications, edited by Turnbull, D. and Ehrenreich, H. (Academic Press, New York, 1987), Vol. 40, pp. 242.Google Scholar
2.Pawlewicz, W. T., Martin, P. M., Hays, D. D., and Mann, I. B., SPIE 325, 105 (1982).Google Scholar
3.Shiraishi, K. and Kawakami, S., Opt. Lett. 15, 516 (1990).Google Scholar
4.Muro, K., Nozawa, J., Ishibashi, N., Shiraishi, K., and Matsumura, K., Proc. IEICE Spring Conf., Tokyo, March 1996, C-244 (in Japanese).Google Scholar
5. Eva Freeman, C. and Paul, W., Phys. Rev. B 2, 716 (1979).Google Scholar
6.McKenzie, D. R., Savvides, N., Mcphedran, R. C., Botten, L. C., and Netterfield, R. P., J. Phys. C, Solid State Phys. 16, 4933 (1983).Google Scholar
7.Savvides, N., McKenzie, D. R., and Mcphedran, R. C., Solid State Commun. 48, 189 (1983).Google Scholar
8. See, for example, Wemple, S. H. and Didomenico, M., Jr., Phys. Rev. B 3, 1338 (1971).Google Scholar
9.Brodsky, M. H., Title, R. S., Weiser, K., and Pettit, G. D., Phys. Rev. B 1, 2632 (1969).Google Scholar
10.Takahashi, H., Nagata, H., and Kataoka, H., Jpn. J. Appl. Phys. 33, 4978 (1994).CrossRefGoogle Scholar
11.Takahashi, H., Nagata, H., Kataoka, H., and Takai, H., J. Mater. Res. 10, 2736 (1995).CrossRefGoogle Scholar
12.Nowicki, R. S., Buckley, W. D., Mackintosh, W. D., and Mitchell, I. V., J. Vac. Sci. Technol. 11, 675 (1974).Google Scholar
13.Dewar, M. J. S. and Thiel, W., J. Am. Chem. Soc. 99, 4899 (1977).CrossRefGoogle Scholar
14. MOPAC Ver. 6, Stewart, J. J. P., QCPE Bull. 9, 10 (1989).Google Scholar
15.Tu, R., Gonzalez-Hernandez, J., and Pollak, F. H., Solid State Commun. 54, 447 (1985).Google Scholar
16.Shuke, R. and Gammon, R. W., Phys. Rev. Lett. 25, 222 (1970).Google Scholar
17.Beeman, D., Tu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).Google Scholar
18.Hayes, T. M., Allen, J. W., Beeby, J. L., and Oh, S-J., Solid State Commun. 56, 953 (1985).Google Scholar
19.Takahashi, H., Nagata, H., Shiroishi, M., Tamai, M., and Kataoka, H., IEEE J. Lightwave Technol. 11, 1978 (1993).CrossRefGoogle Scholar