Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:40:45.207Z Has data issue: false hasContentIssue false

Influence of dendrite arm spacing on the thermal conductivity of an aluminum-silicon casting alloy

Published online by Cambridge University Press:  31 January 2011

C. Vázquez-López
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A. P. 14-740, México, 07000, D.F., Mexico
A. Calderón
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnologia Avanzada del IPN, Calzada Legaria No. 694, Col. Irrigación, México 11500, D.F.Mexico
M. E. Rodríguez
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnologia Avanzada del IPN, Calzada Legaria No. 694, Col. Irrigación, México 11500, D.F.Mexico
E. Velasco
Affiliation:
Corporativo Nemak, S. A. de C. V., A. P. A-100, Monterrey, 66000, N.L.Mexico
S. Cano
Affiliation:
Corporativo Nemak, S. A. de C. V., A. P. A-100, Monterrey, 66000, N.L.Mexico
R. Colás
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, A. P. 149-F, Cd. Universitaria, San Nicolás de los Garza, 66451, N.L.Mexico
S. Valtierra
Affiliation:
Corporativo Nemak, S. A. de C. V., A. P. A-100, Monterrey, 66000, N.L.Mexico
Get access

Extract

The photoacoustic technique and the thermal relaxation method were used to determine the thermal conductivity of some representative samples obtained from an aluminumsilicon casting alloy A319. This material was solidified with an imposed unidirectional thermal gradient to obtain samples with different microstructures characterized by the secondary dendrite arm spacing, which increases as the solidification rate decreases. It was found that the thermal conductivity of the alloy decreases with an increase in the secondary dendrite arm spacing and a decrease in the integral dendrite perimeter.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Norris, P.M., Hastings, M.C., and Wepfer, W.J., J. Exp. Heat. Trans. 7, 43 (1994).CrossRefGoogle Scholar
2.Horwath, J.A. and Mondolfo, L.F., Acta Metall. 10, 1037 (1962).CrossRefGoogle Scholar
3.Flemings, M.C., Kattamis, T.Z., and Bardes, B.P., AFS Trans. 88, 695 (1980).Google Scholar
4.Kotschi, R.M. and Loper, C.R. Jr., AFS Trans. 85, 425 (1977).Google Scholar
5.Campbell, J., Castings (Butterworth-Heinemann, London, 1991).Google Scholar
6.Polmear, I.J., Light Alloys (Arnold, a division of Hodder Headline PLC, London, 1996).Google Scholar
7.Carbajal, J.L., Casado, C., Mojica, J.F., and Valtierra, S., 3rd. Int. Conf. Molten Aluminum Processing (AFS, Des Plaines, IL, 1992), p. 141.Google Scholar
8.Mondolfo, L., Aluminum Alloys, Structure and Properties (Butterworth, London, 1986).Google Scholar
9.Backerud, L. and Krol, E., Solidification Characteristics of Aluminum Alloys (Foundry Alloys, Skan Aluminum, Oslo, 1990), Vol. 2.Google Scholar
10.Hatch, J.E., Aluminum Properties and Physical Metallurgy (ASM, Metals Park, OH, 1984).Google Scholar
11.Kuo, P.K., Wei, L., and Thomas, R.L. in Photoacoustic and Photothermal Phenomena III, Springer Series in Optical Sciences Vol. 69, edited by Tamir, Theodor (Springer-Verlag, Berlin, 1992).Google Scholar
12.Feit, E. and Shaw, H., Am. Ceram. Soc. Bull. 70, 125 (1991).Google Scholar
13.Ångstrom, A.J., Phil. Mag. 26, 130 (1863).CrossRefGoogle Scholar
14.Perondi, L.F. and Miranda, L.C.M, J. Appl. Phys. 62, 2955 (1987).CrossRefGoogle Scholar
15.Rodríguez, M.E., Yáñez, J. M., Cruz, A., Alvarado, J.J., Zelaya, O., Sánchez, F., Vargas, H., Figueroa, J.D., Martínez, F., Martínez, J., González, J., and Miranda, L.C.M, Lebensm, Z., Unters Forsch. 201, 236 (1995).CrossRefGoogle Scholar
16.Yáñez, M., Rodríguez, M.E., Alvarado, J.J., Zelaya, O., Sánchez, F., Cruz, A., Vargas, H., Figueroa, J.D.C, Martínez, F., Martínez, J., González, J., Argüello, C., and Miranda, L.C.M, Analyst bf. 120, 1953 (1995).CrossRefGoogle Scholar
17.Calderón, A., Alvarado Gil, J.J., Gurevich, Y., Cruz Orea, A., Delgadillo, I., Vargas, H., and Miranda, L.C.M, Phys. Rev. Lett. 79, 5022 (1997).CrossRefGoogle Scholar
18.Cruz-Orea, A., Delgadillo, I., Vargas, H., Gudiño, A., Marin, E., Vázquez-López, C., Calderón, A., and Alvarado, J.J., J. Appl. Phys. 79, 8951 (1996).CrossRefGoogle Scholar
19.Rousset, G., Lepoutre, F., and Bertrand, L.J. Appl. Phys. 54, 2383 (1983).CrossRefGoogle Scholar
20.Calderón, A., Muñoz Hernández, R.A., Tomás, S.A., Cruz Orea, A., and Sánchez Sinencio, F., J. Appl. Phys. 84, 6327 (1998).CrossRefGoogle Scholar
21.Hatta, I., Rev. Sci. Inst. 50, 292 (1979).CrossRefGoogle Scholar
22.Gutiérrez-Juárez, G., Zelaya, O., Alvarado-Gil, Juan J., Vargas, H., Pastore, H. de O., Barone, J.S., Hernández, M., and Baños, L., J.Chem. Soc., Faraday Trans. 92, 2651 (1996).Google Scholar
23.Caceres, C.H., Davidson, C.J., and Griffiths, J.R., Mater. Sci. Eng. A197, 171 (1995).CrossRefGoogle Scholar
24.Spear, R.E. and Gardner, G.R., Trans. AFS. 71, 209 (1963).Google Scholar
25.Hamed, Q.S. and Elliot, R., Cast Metals. 6, 36 (1993).CrossRefGoogle Scholar
26.Granger, D.A. and Ting, E., in Structures in Directionally Solidified Aluminum Foundry Alloy, edited by Stefanescu, D.M., Abbaschian, G.J., and Bayuzick, R.J. (The Metallurgical Society, London, United Kingdom, 1988), p. A356.Google Scholar
27.Jaques, J.C. and Hotz, W., Cast Metals. 4, 200 (1992).Google Scholar
28.Velasco, E., Hernandez, F., de la Rosa, J.G., Valtierra, S., Mojica, J.F., and Colas, R. in Light Metals, edited by Welch, B. (TMS, Warrendale, PA, 1998) p. 993.Google Scholar
29.Gruzleski, J.E. and Closset, B.M., The Treatment of Liquid Aluminum-Silicon Alloys (AFS, Des Plaines, 1990).Google Scholar
29.Gundlach, R.B., Thermal Fatigue Resistance of Aluminum Alloy 319 (Climax Research Services, Cleveland, OH, 1993).Google Scholar